A Study of the Safety and Effectiveness of Combined Copaxone and Estriol for Relapsing Remitting Multiple Sclerosis

Overview

About this study

This is a double-blinded, placebo controlled study of estriol pills versus placebo pills in relapsing remitting multiple sclerosis. The study treatment will be an added on to Copaxone injections in all subjects. The primary outcome measure is a reduction in relapses.

Participation eligibility

Participant eligibility includes age, gender, type and stage of disease, and previous treatments or health concerns. Guidelines differ from study to study, and identify who can or cannot participate. There is no guarantee that every individual who qualifies and wants to participate in a trial will be enrolled. Contact the study team to discuss study eligibility and potential participation.

Inclusion Criteria

  • Diagnosis of relapsing remitting multiple sclerosis
  • At least one relapse in the last two years

Exclusion Criteria

  • Treated in the past with
    • Total lymphoid irradiation
    • Monoclonal antibody
    • T cell vaccination
    • Cladribine
    • Bone marrow transplantation
    • Azathioprine
    • Cyclophosphamide
    • Methotrexate
    • Mitoxantrone
    • Cyclosporin 
    • Tysabri
  • Clinically significant diseases other than multiple sclerosis

Participating Mayo Clinic locations

Study statuses change often. Please contact the study team for the most up-to-date information regarding possible participation.

Mayo Clinic Location Status

Scottsdale/Phoenix, Ariz.

Mayo Clinic principal investigator

Dean Wingerchuk, M.D.

Closed for enrollment

More information

Publications

  • Cognitive deficits occur in over half of multiple sclerosis patients, with hippocampal-dependent learning and memory commonly impaired. Data from in vivo MRI and post-mortem studies in MS indicate that the hippocampus is targeted. However, the relationship between structural pathology and dysfunction of the hippocampus in MS remains unclear. Hippocampal neuropathology also occurs in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Although estrogen treatment of EAE has been shown to be anti-inflammatory and neuroprotective in the spinal cord, it is unknown if estrogen treatment may prevent hippocampal pathology and dysfunction. In the current study we examined excitatory synaptic transmission during EAE and focused on pathological changes in synaptic protein complexes known to orchestrate functional synaptic transmission in the hippocampus. We then determined if estriol, a candidate hormone treatment, was capable of preventing functional changes in synaptic transmission and corresponding hippocampal synaptic pathology. Electrophysiological studies revealed altered excitatory synaptic transmission and paired-pulse facilitation (PPF) during EAE. Neuropathological experiments demonstrated that there were decreased levels of pre- and post-synaptic proteins in the hippocampus, diffuse loss of myelin staining and atrophy of the pyramidal layers of hippocampal cornu ammonis 1 (CA1). Estriol treatment prevented decreases in excitatory synaptic transmission and lessened the effect of EAE on PPF. In addition, estriol treatment prevented several neuropathological alterations that occurred in the hippocampus during EAE. Cross-modality correlations revealed that deficits in excitatory synaptic transmission were significantly correlated with reductions in trans-synaptic protein binding partners known to modulate excitatory synaptic transmission. To our knowledge, this is the first report describing a functional correlate to hippocampal neuropathology in any MS model. Furthermore, a treatment was identified that prevented both deficits in synaptic function and hippocampal neuropathology. Read More on PubMed
  • Estrogen has well-documented neuroprotective effects in a variety of clinical and experimental disorders of the CNS, including autoimmune inflammation, traumatic injury, stroke, and neurodegenerative diseases. The beneficial effects of estrogens in CNS disorders include mitigation of clinical symptoms, as well as attenuation of histopathological signs of neurodegeneration and inflammation. The cellular mechanisms that underlie these CNS effects of estrogens are uncertain, because a number of different cell types express estrogen receptors in the peripheral immune system and the CNS. Here, we investigated the potential roles of two endogenous CNS cell types in estrogen-mediated neuroprotection. We selectively deleted estrogen receptor-α (ERα) from either neurons or astrocytes using well-characterized Cre-loxP systems for conditional gene knockout in mice, and studied the effects of these conditional gene deletions on ERα ligand-mediated neuroprotective effects in a well-characterized model of adoptive experimental autoimmune encephalomyelitis (EAE). We found that the pronounced and significant neuroprotective effects of systemic treatment with ERα ligand on clinical function, CNS inflammation, and axonal loss during EAE were completely prevented by conditional deletion of ERα from astrocytes, whereas conditional deletion of ERα from neurons had no significant effect. These findings show that signaling through ERα in astrocytes, but not through ERα in neurons, is essential for the beneficial effects of ERα ligand in EAE. Our findings reveal a unique cellular mechanism for estrogen-mediated CNS neuroprotective effects by signaling through astrocytes, and have implications for understanding the pathophysiology of sex hormone effects in diverse CNS disorders. Read More on PubMed
  • Matrix metalloproteinases (MMPs) have a crucial function in migration of inflammatory cells into the central nervous system (CNS). Levels of MMP-9 are elevated in multiple sclerosis (MS) and predict the occurrence of new active lesions on magnetic resonance imaging (MRI). This translational study aims to determine whether in vivo treatment with the pregnancy hormone estriol affects MMP-9 levels from immune cells in patients with MS and mice with experimental autoimmune encephalomyelitis (EAE). Peripheral blood mononuclear cells (PBMCs) collected from three female MS patients treated with estriol and splenocytes from EAE mice treated with estriol, estrogen receptor (ER) alpha ligand, ERbeta ligand or vehicle were stimulated ex vivo and analyzed for levels of MMP-9. Markers of CNS infiltration were assessed using MRI in patients and immunohistochemistry in mice. Supernatants from PBMCs obtained during estriol treatment in female MS patients showed significantly decreased MMP-9 compared with pretreatment. Decreases in MMP-9 coincided with a decrease in enhancing lesion volume on MRI. Estriol treatment of mice with EAE reduced MMP-9 in supernatants from autoantigen-stimulated splenocytes, coinciding with decreased CNS infiltration by T cells and monocytes. Experiments with selective ER ligands showed that this effect was mediated through ERalpha. In conclusion, estriol acting through ERalpha to reduce MMP-9 from immune cells is one mechanism potentially underlying the estriol-mediated reduction in enhancing lesions in MS and inflammatory lesions in EAE. Read More on PubMed
  • Treatment with either estradiol or an estrogen receptor (ER)alpha ligand has been shown to be both antiinflammatory and neuroprotective in a variety of neurological disease models, but whether neuroprotective effects could be observed in the absence of an antiinflammatory effect has remained unknown. Here, we have contrasted effects of treatment with an ERalpha vs. an ERbeta ligand in experimental autoimmune encephalomyelitis, the multiple sclerosis model with a known pathogenic role for both inflammation and neurodegeneration. Clinically, ERalpha ligand treatment abrogated disease at the onset and throughout the disease course. In contrast, ERbeta ligand treatment had no effect at disease onset but promoted recovery during the chronic phase of the disease. ERalpha ligand treatment was antiinflammatory in the systemic immune system, whereas ERbeta ligand treatment was not. Also, ERalpha ligand treatment reduced CNS inflammation, whereas ERbeta ligand treatment did not. Interestingly, treatment with either the ERalpha or the ERbeta ligand was neuroprotective, as evidenced by reduced demyelination and preservation of axon numbers in white matter, as well as decreased neuronal abnormalities in gray matter. Thus, by using the ERbeta selective ligand, we have dissociated the antiinflammatory effect from the neuroprotective effect of estrogen treatment and have shown that neuroprotective effects of estrogen treatment do not necessarily depend on antiinflammatory properties. Together, these findings suggest that ERbeta ligand treatment should be explored as a potential neuroprotective strategy in multiple sclerosis and other neurodegenerative diseases, particularly because estrogen-related toxicities such as breast and uterine cancer are mediated through ERalpha. Read More on PubMed
  • To study the effect of testosterone supplementation on men with multiple sclerosis (MS). Read More on PubMed
  • Multiple sclerosis is an inflammatory, neurodegenerative disease for which experimental autoimmune encephalomyelitis (EAE) is a model. Treatments with estrogens have been shown to decrease the severity of EAE through anti-inflammatory mechanisms. Here we investigated whether treatment with an estrogen receptor alpha (ERalpha) ligand could recapitulate the estrogen-mediated protection in clinical EAE. We then went on to examine both anti-inflammatory and neuroprotective mechanisms. EAE was induced in wild-type, ERalpha-, or ERbeta-deficient mice, and each was treated with the highly selective ERalpha agonist, propyl pyrazole triol, to determine the effect on clinical outcomes, as well as on inflammatory and neurodegenerative changes. ERalpha ligand treatment ameliorated clinical disease in both wild-type and ERbeta knock-out mice, but not in ERalpha knock-out mice, thereby demonstrating that the ERalpha ligand maintained ERalpha selectivity in vivo during disease. ERalpha ligand treatment also induced favorable changes in autoantigen-specific cytokine production in the peripheral immune system [decreased TNFalpha, interferon-gamma, and interleukin-6, with increased interleukin-5] and decreased CNS white matter inflammation and demyelination. Interestingly, decreased neuronal staining [NeuN+ (neuronal-specific nuclear protein)/beta3-tubulin+/Nissl], accompanied by increased immunolabeling of microglial/monocyte (Mac 3+) cells surrounding these abnormal neurons, was observed in gray matter of spinal cords of EAE mice at the earliest stage of clinical disease, 1-2 d after the onset of clinical signs. Treatment with either estradiol or the ERalpha ligand significantly reduced this gray matter pathology. In conclusion, treatment with an ERalpha ligand is highly selective in vivo, mediating both anti-inflammatory and neuroprotective effects in EAE. Read More on PubMed
  • The protective effect of pregnancy on putative Th1-mediated autoimmune diseases, such as multiple sclerosis and rheumatoid arthritis, is associated with a Th1 to Th2 immune shift during pregnancy. The hormone estriol increases during pregnancy and has been shown to ameliorate experimental autoimmune encephalomyelitis and collagen-induced arthritis. In addition, estrogens induce cytokine changes consistent with a Th1 to Th2 shift when administered in vitro to human immune cells and in vivo to mice. In a pilot trial, oral estriol treatment of relapsing remitting multiple sclerosis patients caused significant decreases in enhancing lesions on brain magnetic resonance imaging. Here, the immunomodulatory effects of oral estriol therapy were assessed. PBMCs collected longitudinally during the trial were stimulated with mitogens, recall Ags, and glatiramer acetate. Cytokine profiles of stimulated PBMCs were determined by intracellular cytokine staining (IL-5, IL-10, IL-12 p40, TNF-alpha, and IFN-gamma) and cytometric bead array (IL-2, IL-4, IL-5, IL-10, TNF-alpha, and IFN-gamma). Significantly increased levels of IL-5 and IL-10 and decreased TNF-alpha were observed in stimulated PBMC isolated during estriol treatment. These changes in cytokines correlated with reductions of enhancing lesions on magnetic resonance imaging in relapsing remitting multiple sclerosis. The increase in IL-5 was primarily due to an increase in CD4(+) and CD8(+) T cells, the increase in IL-10 was primarily due to an increase in CD64(+) monocytes/macrophages with some effect in T cells, while the decrease in TNF-alpha was primarily due to a decrease in CD8(+) T cells. Further study of oral estriol therapy is warranted in Th1-mediated autoimmune diseases with known improvement during pregnancy. Read More on PubMed
  • Multiple sclerosis patients who become pregnant experience a significant decrease in relapses that may be mediated by a shift in immune responses from T helper 1 to T helper 2. Animal models of multiple sclerosis have shown that the pregnancy hormone, estriol, can ameliorate disease and can cause an immune shift. We treated nonpregnant female multiple sclerosis patients with the pregnancy hormone estriol in an attempt to recapitulate the beneficial effect of pregnancy. As compared with pretreatment baseline, relapsing remitting patients treated with oral estriol (8 mg/day) demonstrated significant decreases in delayed type hypersensitivity responses to tetanus, interferon-gamma levels in peripheral blood mononuclear cells, and gadolinium enhancing lesion numbers and volumes on monthly cerebral magnetic resonance images. When estriol treatment was stopped, enhancing lesions increased to pretreatment levels. When estriol treatment was reinstituted, enhancing lesions again were significantly decreased. Based on these results, a larger, placebo-controlled trial of estriol is warranted in women with relapsing remitting multiple sclerosis. This novel treatment strategy of using pregnancy doses of estriol in multiple sclerosis has relevance to other autoimmune diseases that also improve during pregnancy. Read More on PubMed

Additional contact information

Non-cancer trials contact form

Phone: 800-664-4542 (toll-free)

International patient clinical studies questions