Study of Biomarker-Based Treatment of Acute Myeloid Leukemia

Overview

About this study

This screening and multi-sub-study Phase 1b/2 trial will establish a method for genomic screening followed by assigning and accruing simultaneously to a multi-study "Master Protocol (BAML-16-001-M1)." The specific subtype of acute myeloid leukemia will determine which sub-study, within this protocol, a participant will be assigned to evaluate investigational therapies or combinations with the ultimate goal of advancing new targeted therapies for approval. The study also includes a marker negative sub-study which will include all screened patients not eligible for any of the biomarker-driven sub-studies.

Participation eligibility

Participant eligibility includes age, gender, type and stage of disease, and previous treatments or health concerns. Guidelines differ from study to study, and identify who can or cannot participate. There is no guarantee that every individual who qualifies and wants to participate in a trial will be enrolled. Contact the study team to discuss study eligibility and potential participation.

Inclusion Criteria:

  • Adults, age 60 years or older at the time of diagnosis.
  • Subjects or their legal representative must be able to understand and provide written informed consent.

Cohort Inclusion Criteria - Group A:

  • Subjects must have previously untreated acute myeloid leukemia (AML) according to the WHO classification with no prior treatment other than hydroxyurea. Prior therapy for myelodysplastic syndrome (MDS), myeloproliferative syndromes (MPD), or aplastic anemia is permitted but not with hypomethylating agents.

Cohort Inclusion Criteria - Group B:

  • Subjects must have relapsed or refractory AML according to the WHO classification. For study purposes, refractory AML is defined as failure to ever achieve CR or recurrence of AML within 6 months of achieving CR; relapsed AML is defined as all others with disease after prior remission. (Group B is not currently recruiting.)

Exclusion Criteria:

  • Isolated myeloid sarcoma (meaning, patients must have blood or marrow involvement with AML to enter the study).
  • Acute promyelocytic leukemia.
  • Symptomatic central nervous system (CNS) involvement by AML.
  • Signs of leukostasis requiring urgent therapy.
  • Disseminated intravascular coagulopathy with active bleeding or signs of thrombosis.
  • Patients with psychological, familial, social, or geographic factors that otherwise preclude them from giving informed consent, following the protocol, or potentially hamper compliance with study treatment and follow-up.
  • Any other significant medical condition, including psychiatric illness or laboratory abnormality, that would preclude the patient participating in the trial or would confound the interpretation of the results of the trial.

Participating Mayo Clinic locations

Study statuses change often. Please contact the study team for the most up-to-date information regarding possible participation.

Mayo Clinic Location Status Contact

Scottsdale/Phoenix, Ariz.

Mayo Clinic principal investigator

Lisa Sproat, M.D.

Closed for enrollment

Contact information:

Cancer Center Clinical Trials Referral Office

855-776-0015

Jacksonville, Fla.

Mayo Clinic principal investigator

James Foran, M.D.

Closed for enrollment

Contact information:

Cancer Center Clinical Trials Referral Office

855-776-0015

Rochester, Minn.

Mayo Clinic principal investigator

James Foran, M.D.

Closed for enrollment

Contact information:

Cancer Center Clinical Trials Referral Office

(855) 776-0015

-

More information

Publications

  • Enasidenib (ENA) is an inhibitor of isocitrate dehydrogenase 2 (IDH2) approved for the treatment of patients with IDH2-mutant relapsed/refractory acute myeloid leukemia (AML). In this phase 2/1b Beat AML substudy, we applied a risk-adapted approach to assess the efficacy of ENA monotherapy for patients aged ≥60 years with newly diagnosed IDH2-mutant AML in whom genomic profiling demonstrated that mutant IDH2 was in the dominant leukemic clone. Patients for whom ENA monotherapy did not induce a complete remission (CR) or CR with incomplete blood count recovery (CRi) enrolled in a phase 1b cohort with the addition of azacitidine. The phase 2 portion assessing the overall response to ENA alone demonstrated efficacy, with a composite complete response (cCR) rate (CR/CRi) of 46% in 60 evaluable patients. Seventeen patients subsequently transitioned to phase 1b combination therapy, with a cCR rate of 41% and 1 dose-limiting toxicity. Correlative studies highlight mechanisms of clonal elimination with differentiation therapy as well as therapeutic resistance. This study demonstrates both efficacy of ENA monotherapy in the upfront setting and feasibility and applicability of a risk-adapted approach to the upfront treatment of IDH2-mutant AML. This trial is registered at www.clinicaltrials.gov as #NCT03013998. Read More on PubMed
  • Next-generation sequencing (NGS) to identify pathogenic mutations is an integral part of acute myeloid leukemia (AML) therapeutic decision-making. The concordance in identifying pathogenic mutations among different NGS platforms at different diagnostic laboratories has been studied in solid tumors but not in myeloid malignancies to date. To determine this interlaboratory concordance, we collected a total of 194 AML bone marrow or peripheral blood samples from newly diagnosed patients with AML enrolled in the Beat AML Master Trial (BAMT) at 2 academic institutions. We analyzed the diagnostic samples from patients with AML for the detection of pathogenic myeloid mutations in 8 genes (DNMT3A, FLT3, IDH1, IDH2, NPM1, TET2, TP53, and WT1) locally using the Hematologic Neoplasm Mutation Panel (50-gene myeloid indication filter) (site 1) or the GeneTrails Comprehensive Heme Panel (site 2) at the 2 institutions and compared them with the central results from the diagnostic laboratory for the BAMT, Foundation Medicine, Inc. The overall percent agreement was over 95% each in all 8 genes, with almost perfect agreement (κ > 0.906) in all but WT1, which had substantial agreement (κ = 0.848) when controlling for site. The minimal discrepancies were due to reporting variants of unknown significance (VUS) for the WT1 and TP53 genes. These results indicate that the various NGS methods used to analyze samples from patients with AML enrolled in the BAMT show high concordance, a reassuring finding given the wide use of NGS for therapeutic decision-making in AML. Read More on PubMed
  • Patients with acute myeloid leukemia (AML) who have tumor protein p53 (TP53) mutations or a complex karyotype have a poor prognosis, and hypomethylating agents are often used. The authors evaluated the efficacy of entospletinib, an oral inhibitor of spleen tyrosine kinase, combined with decitabine in this patient population. Read More on PubMed
  • Advances in genomic technologies and an increased understanding of the molecular pathogenesis of cancer have resulted in development of new effective, mutation-targeted therapies. In turn, these informed the development of Master Trial designs to test these therapies. The Beat Acute Myeloid Leukemia (BAML) Master Trial (Sponsor: The Leukemia & Lymphoma Society) tests several targeted therapies in patients aged ≥ 60 years with AML based on genomic profiling obtained within 7 days of study enrollment. We hypothesized that integrating operational strategies with new electronic technologies (e-technologies) might streamline the conduct and management of this Master Trial. BAML's 5 core operational strategies revolve around the guiding principle of "patients first." The e-technology platforms employed in BAML include: Clinical Oversight Platform: a central collaborative tool; e-Protocol/e-Source Upload/Electronic Data Capture Platform: digitizes the protocol, allows remote data monitoring, and collects/exports data in Study Data Tabulation Model format; and Data Review Platform: ingests data from different sources for clinical response and safety data reviews. The operational approaches, e-technologies and sponsor/contract research organization's (CRO) expertise together allow: the complexity and size of the BAML Master Trial to be better managed; near real-time study data oversight; better collaboration, communication and training; improved data collection, enhanced transmission and accessibility; data integration, review and generation of reports; while maintaining data privacy, and compliance. Initial e-technology challenges were overcome through training, learning, discipline and adjustment. In conclusion, to successfully manage Master Trials, significant time should be spent re-evaluating, improving and developing new operational approaches.Clinical Trial Registration: Clinical Trials.gov Identifier: NCT03013998. https://clinicaltrials.gov/ct2/show/NCT03013998 . Read More on PubMed
  • Acute myeloid leukemia (AML) is the most common diagnosed leukemia. In older adults, AML confers an adverse outcome. AML originates from a dominant mutation, then acquires collaborative transformative mutations leading to myeloid transformation and clinical/biological heterogeneity. Currently, AML treatment is initiated rapidly, precluding the ability to consider the mutational profile of a patient's leukemia for treatment decisions. Untreated patients with AML ≥ 60 years were prospectively enrolled on the ongoing Beat AML trial (ClinicalTrials.gov NCT03013998 ), which aims to provide cytogenetic and mutational data within 7 days (d) from sample receipt and before treatment selection, followed by treatment assignment to a sub-study based on the dominant clone. A total of 487 patients with suspected AML were enrolled; 395 were eligible. Median age was 72 years (range 60-92 years; 38% ≥75 years); 374 patients (94.7%) had genetic and cytogenetic analysis completed within 7 d and were centrally assigned to a Beat AML sub-study; 224 (56.7%) were enrolled on a Beat AML sub-study. The remaining 171 patients elected standard of care (SOC) (103), investigational therapy (28) or palliative care (40); 9 died before treatment assignment. Demographic, laboratory and molecular characteristics were not significantly different between patients on the Beat AML sub-studies and those receiving SOC (induction with cytarabine + daunorubicin (7 + 3 or equivalent) or hypomethylation agent). Thirty-day mortality was less frequent and overall survival was significantly longer for patients enrolled on the Beat AML sub-studies versus those who elected SOC. A precision medicine therapy strategy in AML is feasible within 7 d, allowing patients and physicians to rapidly incorporate genomic data into treatment decisions without increasing early death or adversely impacting overall survival. Read More on PubMed

Additional contact information

Cancer-related trials contact form

Phone: 855-776-0015 (toll-free)

International patient clinical studies questions