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1.  Introduction 

The practice of dichotomizing continuous covariates is common in medical and 

epidemiological research for several reasons, both clinical and statistical.  From a clinical point 

of view, binary covariates may be preferred for (1) offering a simple risk classification into 

“high” versus “low”, (2) establishing eligibility criteria for prospective studies, (3) assisting in 

making treatment recommendations, (4) setting diagnostic criteria for disease, (5) estimating 

prognosis, and (6) imposing an assumed biological threshold [1-7].  From a statistical point of 

view, binary covariates may be preferred for (1) offering a simpler interpretation of common 

effect measures from statistical models such as odds ratios and relative risks, (2) avoiding the 

linearity assumption implicit in common statistical models for continuous covariates, (3) 

modeling a previously suspected or assumed threshold effect, and (4) making data 

summarization more efficient [1, 7-11].   

Data dependent methods for dichotomizing continuous covariates, such as splits about 

some percentile (median, 25
th

, 75
th

), the mean, or some reputed clinically relevant threshold are 

arbitrary and may not be useful in assessing a variable’s true prognostic value [1, 4, 6, 9, 12-14].  

In contrast, outcome-based methods allow an “optimal” cutpoint to be estimated; the “optimal” 

cutpoint being defined as that threshold value of the continuous covariate distribution which, 

using statistical criteria, best separates low and high risk patients with respect to some outcome 

[2, 3, 5-7, 9, 14-17].  While methods utilizing statistical criteria allow for estimation of a “best” 

threshold value for a covariate, the inherent difficulties with searching for and utilizing an 

optimal cutpoint are well documented, namely the inflation of Type I error rates, a tendency to 

overestimate measures of effect, the potentially substantial loss of information when 

categorizing, and the inability to replicate the optimal cutpoint in subsequent studies [1-4, 6-10, 
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12-14, 17-19].  Several methods for calculating appropriate p-values and unbiased effect 

measures with optimal cutpoints have been documented in the statistical and medical literature, 

and will be discussed throughout this report.   

The goal of this Technical Report is to consolidate the extant literature and describe in 

detail a unified strategy for finding optimal cutpoints with respect to binary and time-to-event 

outcomes, though analogous techniques for other types of outcomes also exist.  Two in house 

SAS
®
 macros which can perform the more salient procedures for identifying a cutpoint have 

been developed in conjunction with this Technical Report.  It is important to note that the 

strategy described herewith is most appropriate when a threshold value truly exists.  That is, we 

assume some binary split of the continuous covariate will create two relatively homogeneous 

groups with respect to a particular outcome [15, 20].  Under this assumption, a dichotomized 

version of the continuous covariate can be employed as the independent variable and the binary 

or time-to-event outcome as the dependent variable in what will be referred to as a cutpoint 

model.  In a graphical sense, the cutpoint model can be thought of as a step function that 

adequately portrays the relationship between the continuous covariate and the outcome, where 

the risk of outcome remains at a constant level up to some cutpoint, then abruptly drops or rises 

vertically at the cutpoint to a new level of risk which remains constant throughout [6, 7, 11, 20, 

21].  This is often an over-simplified and unrealistic portrayal of the true underlying model, but 

nevertheless may be preferable to a linear model or a more sophisticated model incorporating 

flexible functions for continuous covariates that may overfit idiosyncrasies in a particular data 

set and/or be difficult to interpret and communicate to investigators [1, 2, 11, 20].  

Notwithstanding the above discourse, the cutpoint model is a reasonable alternative (and a valid 



 4 

model) under any monotonic relationship between the continuous variable and outcome, a 

situation characterizing most covariate-outcome relationships [2, 11].    

2.  General Strategy 

In this section a general strategy for finding optimal cutpoints is described, beginning 

with determining the appropriateness of a cutpoint model via (a) graphical diagnostic plots, 

followed by (b) estimation of a cutpoint.  A description of the two SAS
®
 macros, %cutpoint and 

%findcut, in the context of binary and time to event outcomes respectively is provided in the 

appendix.     

2a. Graphical diagnostic plots 

In the absence of any a priori clinical information regarding the prognostic relationship 

between a continuous covariate and outcome, the appropriateness of a cutpoint model must be 

determined empirically with graphical and numerical results [4, 6, 15, 16].  Several techniques 

have been introduced which allow flexible forms of a continuous covariate to be modeled, 

including smoothing splines, fractional polynomials, and non-parametric regression [21, 22].  Of 

these, smoothing splines have received the most attention, and have been incorporated into some 

of the standard statistical software packages.  The results from models utilizing splines allow one 

to graph the continuous covariate as a function against the modeled outcome or some 

transformed version of the outcome such as odds ratios or hazard ratios from a logistic or Cox 

regression model respectively.  A steep and definitive increase or decrease in the spline function 

near a threshold value which is relatively flat before and after the threshold provides evidence in 

favor of a cutpoint model.  Grouped data plots and plots of Martingale residuals also serve as 

valuable graphical diagnostics for the appropriateness of a cutpoint model in a logistic or Cox 
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regression model setting respectively [6, 23].  These techniques will be described in Sections 3 & 

4 respectively.    

2b. Estimation of optimal cutpoint 

 Determining the existence of a threshold effect and estimating an optimal cutpoint for a 

single continuous covariate uses a series of two-sample tests for the multiple possible candidate 

dichotomizations of the continuous covariate.  The maximum number of candidate cutpoints is k-

1, where k is the number of unique values of the continuous covariate.  Some have suggested 

excluding the outer 10-20% of the continuous covariate distribution to avoid having small 

numbers in one of the groups following dichotomization, thereby preventing substantial losses in 

statistical power [1, 5, 6, 16, 17].  The inner 80-90% of the distribution from which a cutpoint is 

chosen is referred to as the selection interval.  For each candidate cutpoint within a specified 

selection interval, an appropriate two-sample test with concomitant test statistic and p-value (Pc) 

is determined.  A cutpoint model may be appropriate if any Pc is less than or equal to some pre-

specified allowable level of Type I error.  The optimal cutpoint is often defined as that candidate 

cutpoint with the smallest Pc.  This method for estimating a cutpoint is referred to as the 

minimum p-value approach, or alternatively the maximum statistic approach [1].  Other criteria 

for choosing an optimal cutpoint have been suggested, including maximum effect size and 

maximum precision of estimates, but have received less support [6, 24].       

It is well recognized that Type I error rates for an optimal cutpoint found via the 

minimum p-value approach can be substantially inflated as a result of multiple comparisons [3, 

4, 6, 10, 14, 18].  That is, the likelihood of finding a significant association at significance level 

α between a chosen cutpoint and outcome when in reality no relationship exists is likely to be 

much higher than α.  This inflation rises as the number of candidate cutpoints examined 
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increases [4, 6, 10, 14].  In simulation studies Type I error rates have been found to be as high as 

50% when examining 50 cutpoints [14].   Clearly the prognostic significance of a continuous 

covariate can be drastically overestimated with this dichotomization approach due to the series of 

statistical tests.  Several alternative methods attempt to correct this problem: (1) significance 

level (α) adjustment, (2) p-value adjustment, and (3) cross-validation / split sample approach.  

The simplest and perhaps most popular method of α-level adjustment is the Bonferroni 

correction, which simply divides the desired pre-specified α-level (usually 0.05) by the number 

of candidate cutpoints examined [6, 10, 15].  Bonferroni correction assumes all statistical tests 

being conducted are independent of each other, and therefore is considered a conservative 

technique under non-independence of tests, in that the Bonferroni-adjusted α-level will be 

smaller than an adjusted α-level that accounts for the correlation between statistical tests [1, 6, 

10, 20].  The technique’s conservatism can be an attractive feature in determining the statistical 

significance of an optimal cutpoint, as only strong relationships between the dichotomized 

covariate and outcome would be deemed statistically significant.   

Multiple authors have proposed p-value adjustment formulae, which use mathematical 

functions of observed p-values to estimate p-values adjusted for examining multiple candidate 

cutpoints [2, 5, 16, 17].  In the approach by Miller and Seigmund [17], the distribution of a 

maximally selected test statistic is derived, which is then used to obtain an adjusted p-value.  An 

adjusted p-value of approximately 0.002 is equivalent to an unadjusted p-value of 0.05 when 

examining the inner 80% of the continuous covariate’s distribution [1].  Furthermore, when 

examining the inner 90% of the distribution, an adjusted p-value of approximately 0.001 equates 

to an unadjusted p-value of 0.05 [1].  This approach requires the width of the selection interval to 

be specified.                    
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The two-fold cross-validation technique provides a third method for determining the 

statistical significance of a cutpoint model [3, 7].  The steps involved in the technique are as 

follows: 

(1) Randomly split all observations into two data sets of approximately equal size (call 

these Set I and Set II). 

(2) Using Set I, find the cutpoint with the minimum p-value (C1). 

(3) Using Set II, find the cutpoint with the minimum p-value (C2).          

(4) Using C1, group patients in Set II into High (above C1, H) and Low (below C1, L). 

(5) Using C2, group patients in Set I into High (above C2, H) and Low (below C2, L). 

(6) Use the High and Low classifications to calculate the two-sample test statistic.   

In simulation studies, Type I error rates from two-fold cross-validation were found to be 

approximately correct [3].  Two-fold cross-validation has the additional benefit of providing 

approximately unbiased estimates of effect size.  Finally, the split sample approach can also be 

used to calculate p-values that are not affected by the multiple testing procedures.  With this 

approach a data set is divided into a training set and a validation set.  An optimal cutpoint is 

determined from the training set, and its significance and effect size determined from the 

validation set.  While able to produce approximately correct p-values and effect sizes, this 

method does not use the entire data set in estimating an optimal cutpoint and often needs a large 

data set in which to split the data [3, 7]. In this report, we do not pursue the two fold cross 

validation and the split sample approaches.  

2c. Summary of strategy and SAS Macro Content  

 In this Technical Report two SAS macros, %cutpoint and %findcut, are introduced which 

execute the aforementioned techniques for binary and time to event outcomes respectively.  The 
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organization of each macro parallels the enumeration in the general strategy just described.  Each 

macro begins with graphical diagnostic plots for determining the appropriateness of a cutpoint 

model, with grouped data plots and Martingale residual plots included in the %cutpoint and 

%findcut macro respectively.  In the case of binary outcome data, within a user-specified 

selection interval, all candidate cutpoints are considered and corresponding unadjusted p-values 

are calculated.  Furthermore, the corresponding adjusted p-values for each candidate cutpoint are 

calculated within each macro. See appendix I and II for more details on the macro parameters.   

3.  Binary Outcome - Logistic Regression 

 The analysis of a continuous covariate and a binary outcome lends itself to the logistic 

regression model.  Logistic regression models the log odds of experiencing the binary event 

against any number of covariates as given below: 

    0log( )
1

i ix
π

π
= β + β

−
∑ , 

where π is the probability of experiencing the outcome, xi’s are the covariates, and βi’s are the 

regression coefficients.  The simple scenario of only a single continuous covariate is described 

here.   

Throughout Section 3 the methodology for selecting an optimal cutpoint with a binary 

outcome is described in the context of a study examining the effects of angiotensin system 

inhibitor (ASI) discontinuation on hypotension during surgery with general anesthesia [25].  The 

binary outcome is the development of hypotension within 30 minutes following induction with 

an anesthetic agent.  Hypotension is defined as a systolic blood pressure ≤ 85 mmHg.  The 

continuous covariate is the time from last ASI treatment to anesthetic induction, measured in 

hours.  All patients in this study were taking ASI therapy for high blood pressure prior to the 

index surgery, but the ASI therapy must be stopped prior to surgical induction.  Prior studies 
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have suggested that continuing ASI therapy immediately up to surgery may lead to dangerously 

low blood pressure levels following anesthetic induction.  The hypothesis was that longer 

intervals of time between last ASI therapy and surgery would lead to lower incidence of 

hypotension.          

3a. Graphical diagnostic plots 

 Logistic regression models incorporating smoothing splines allow for a visual assessment 

of the functional relationship between the continuous covariate and outcome.  A sharp increase 

or decrease in the spline function may suggest a cutpoint model is appropriate.  At the very least 

a dichotomy with respect to outcome between low and high values of the covariate should be 

evident.  Figure 1 depicts the functional relationship between time between last ASI therapy and 

surgery versus the odds for developing hypotension using a smoothing spline [Note: This was 

obtained using the S-plus spline function with 4 degrees of freedom].  

Figure 1: Smoothing spline to illustrate the functional relationship between the covariate 

and outcome of interest 
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ratio estimates.  From this graph the appropriateness of a cutpoint model could be reasonably 

argued.  A dichotomy in risk between low and high values of the covariate is evident.  The two 

local maximums at approximately 5 and 25 hours cannot be explained clinically, and are likely 

aberrations resulting from a spline’s tendency to overfit.  Furthermore, a precipitous drop in the 

spline occurs beginning shortly after 5 hours and reaching a minimum shortly after 15 hours.  

One would suspect the optimal cutpoint to fall somewhere within these boundaries. 

    Grouped data plots are also a useful graphical diagnostic with a binary outcome [6].  

These are created by grouping the continuous covariate into deciles (or some other quantile 

grouping) and then plotting the mean covariate value within each decile against the proportion 

experiencing the outcome in that decile (see Figure 2).  For this data set,  the grouped data plot 

gives a similar result as the spline.   

Figure 2:  Grouped data plot 
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3b. Estimation of optimal cutpoint 

For a binary outcome, examining a collection of candidate cutpoints can be reduced to a 

series of 2 by 2 tables, 

 X ≤ c X > c 

Y=0 n11 n12 

Y=1 n21 n22 

where X is the continuous covariate to be dichotomized, c is a candidate cutpoint, Y is the binary 

outcome (0=no, 1=yes), and n11, n12, n21, n22 are the respective cell counts.  A p-value (Pc) can be 

calculated for each of the candidate cutpoints from a chi-square test: Pc = P(χ2
 > χc

2
).  For the 

ASI therapy example, the ten candidate cutpoints, odds ratios (probability of developing or 

experiencing hypotension if hours from last ASI therapy to surgery is less than the candidate 

cutpoint compared to greater than the candidate cutpoint), and the corresponding unadjusted and 

adjusted p-values (using the approach of Miller and Seigmund, 1982) are shown in Table 1. The 

candidate cutpoints are ranked based on a total score obtained from the unadjusted p-value 

(highest p-value assigned the lowest score) and corresponding odds ratio estimate (lowest odds 

ratio estimate assigned the lowest score).  

Table 1.  Ten Candidate Cutpoints. 

   P-value 

Hours from last ASI 

therapy to Surgery 

Total 

Score 

Odds Ratio 

(score) 

Adjusted  Unadjusted 

(score) 

9 16 1.782 (6) 0.339 0.020 (10) 

10 13 1.767 (4) 0.360 0.021 (9) 

29 13 2.488 (10) 0.741 0.069 (3) 

27 12 2.137 (7) 0.595 0.047 (5) 

28 12 2.151 (8) 0.705 0.063 (4) 

8 11 1.754 (3) 0.376 0.022 (8) 

30 11 2.463 (9) 0.879 0.099 (2) 

11 9 1.733 (2) 0.433 0.028 (7) 

12 7 1.724 (1) 0.461 0.031 (6) 

26 6 1.770 (5) 0.923 0.112 (1) 
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 In this example, a Bonferroni correction to the usual level of allowable Type I error 

(0.05) gives a corrected significance level of approximately 0.002 (dividing the Type I error rate 

by 27, the number of candidate cutpoints in the 90% selection interval).  As stated earlier, 

Bonferroni adjustment is a conservative technique for judging the statistical significance of an 

optimal cutpoint, and in this case, none of the candidate cutpoints would be deemed statistically 

significant. Similarly, none of the candidate cutpoints for number of hours from last ASI therapy 

to surgery is significant based on the adjusted p-value approach.      

4. Time-to-Event Outcome – Survival Analysis 

 An important difference between the outcome variables modeled via linear and logistic 

regression analyses and the time to event outcome is the fact that we may observe the outcome 

(survival, time to progression etc.) only partially. In other words, for those subjects who 

experience the event, we have the complete data or the actual time, whereas for subjects who do 

not experience the event or are lost to follow up, we only have the length of the follow-up, which 

is an incomplete observation as we do not have the actual event times. These incomplete 

observations are referred as censored observations, which can fall into 3 categories: right 

censored, left censored or interval censored. In addition, incomplete observations can also occur 

due to a selection process inherent in the study design, which is referred to as truncation in this 

setting [26, 27]. Survival Analysis is thus the analysis of such data that corresponds to a time 

from a well-defined starting point until the occurrence of a well-defined event of interest or a pre 

determined end of the observation period.  

 The fundamental building block of survival analyses is the cumulative distribution of the 

survival times, ST(t), and the hazard function, h(t), or the instantaneous failure rates. If T is the 

random variable denoting survival time, then ST(t) = P(T≥t) = P(an individual survives beyond 



 13 

time t) = 1-P(T<t), h(t) = -d/dt log(ST(t)), where 0<t<∞. Some of the outcome-oriented methods 

for cutpoint determination in a survival analysis setting are based on log rank, score, likelihood 

ratio and Wald statistics. Generally, the outcome-oriented methods are expected to have better 

statistical indicators than data-oriented methods [28]. In this report, we focus on the method 

proposed by Contal and O’Quigley [2], which is based on the log rank test statistic.  

 We use data from a multicenter trial of bone marrow transplant patients with a radiation-

free conditioning regimen [29]. A total of 137 patients were classified into three disease groups: 

acute lymphoblastic leukemia (ALL, n = 38), acute myelocytic leukemia (AML) with low risk of 

first remission (n = 54), and AML with a high risk of second remission or untreated first relapse 

or second or greater relapse or never in remission (n = 45). Several potential risk factors were 

measured at the time of transplantation like recipient (patient) and donor sex, recipient and donor 

immune status, recipient and donor age (in years), waiting time (in months) from diagnosis to 

transplantation etc. However, for the purposes of illustration in this report, we only consider the 

following variables: patient’s age, disease group, the outcome variable of interest, which is time 

to relapse or death (in months) along with a censoring indicator for relapse or death [27, 30]. 

4a. Graphical diagnostic plots 

 The lowess smoothed plot of the martingale residuals is a graphical representation of an 

outcome-oriented approach to determine a cutpoint for the patient’s age from the three disease 

groups. A stochastic process with a property that it’s expected value at time t, given it’s history 

at time s < t, is equal to it’s value at time s, is called a martingale. Martingale residuals are used 

to determine the functional form of a covariate [see 23, 27 for derivation and discussion of the 

properties of martingale residuals].  PROC LOESS option in SAS
®
 performs lowess smoothing 

with default smoothing parameter as 0.5 [26, 31]. There are several strategies that can be used to 
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select the smoothing parameter [31]. In our illustration we examine plots of the fitted residuals 

versus the predictor variable and choose the largest smoothing parameter that yields no clearly 

discernible trends in the fit residuals.  Figures 3, 4, and 5 give the lowess smoothed residuals for 

the three disease groups: ALL, AML-Low, and AML-High respectively.  

Figure 3: Plot of martingale residuals versus age and lowess smooth for ALL disease group 

 

Figure 4: Plot of martingale residuals versus age and lowess smooth for AML-Low disease 

group 

 



 15 

Figure 5: Plot of martingale residuals versus age and lowess smooth for AML-High disease 

group 

 

 

  

 The display of both the smooth fit and the individual residuals provides insight into the 

influence of specific individuals on the estimate of the functional form. Figure 3 suggests that 

treating age as linear is inappropriate for the ALL disease group. The smoothed curve is roughly 

zero up to about 24 years and increases linearly up to about 42 years. This suggests that patient’s 

age can be coded as an indicator variable in the Cox proportional hazards model.  

For distinct values of age, we create an indicator variable and then fit the Cox model with 

this new covariate to get the log-likelihood. The value of age that maximizes the log-likelihood 

gives the optimal cutpoint. For the ALL group, this occurs at 28 years as can be seen from Figure 

6. However, in case of the AML-Low and AML-High groups, the lowess smooth values are 

nearly a straight line and support treating age as linear in the model (see Figures 4 and 5). 

Therefore, based on this approach, it is not appropriate to convert age into a categorical variable 

for the AML-Low and AML-High disease groups. 
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Figure 6: Plot of log-likelihood versus distinct patient ages at transplant for ALL disease 

group. 

 

4b. Estimation of optimal cutpoint 

 In this section, we focus on the method proposed by Contal and O’Quigley [2], which is 

based on the log rank test statistic. Let R be the risk factor of interest measured as a continuous 

variable and T be the outcome variable. In case of survival analysis, the outcome of interest T, is 

oftentimes time to death but it can also be time to some other event of interest. The population is 

divided into two groups based on the cutpoint: subjects with the value of the risk factor less than 

or equal to the value of the cutpoint and subjects with the value of the risk factor greater than the 

cutpoint. Let t(1) < t(2) <…….< t(k) be the ordered observed event times of the outcome variable T. 

Let C be the set of K distinct values of the continuous covariate R. Then, based on one 

hypothetical cutpoint from C, let di be the number of events at time t(i), ri be the number of 

subjects at risk prior to time t(i)  and di
+
 and ri

+
 be the number of events at time t(i) in group R > C 

and number of subjects at risk just prior to t(i) in the group R > C. Similarly,  di
-
 and ri

-
 be the 
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number of events at time t(i) in group R ≤ C and number of subjects at risk just prior to t(i) in the 

group R ≤ C. Thus, the log rank statistic for some fixed C is given by: 

∑
=

+
+
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 The optimal cutpoint is that value of C, Ck that maximizes the absolute value of Lk (t). Ck 

therefore gives the value of the continuous covariate that gives the maximum difference between 

the subjects in the two groups defined by the cutpoint. In order to test the significance of the 

obtained cutpoint, following test statistic is proposed: 
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. Such a maximization of the statistic enables the estimation and evaluation of 

the significance of the cutpoint and is adjusted for the bias created by the fact that the optimal 

cutpoint Ck is chosen such that it gives the maximum separation between the two groups [2]. For 

q > 1, the p-value is approximately given by 
22q-

2e and for q ≤ 1, the p-value is at least 0.33. Thus, 

this procedure considers all possible values of the continuous covariate as potential cutpoints. 

 We now present the results for categorizing patients into high or low risk groups for 

disease free survival based on the patient’s age at transplantation for the three groups and also 

assess the significance of the cutpoint [2]. In the ALL group, there are 20 distinct ages, any of 

which can be a potential cut point. There are 23 distinct times when death or relapse occurs, 

which gives s
2
 = 0.8757. The maximum value of |Lk| occurs at age 28 with q = 1.2946 and p-
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value of 0.07 (see Table 2). This suggests that the cutpoint obtained is significant, i.e., age is 

related to time to disease free survival for ALL group (note: 10% level of significance is used 

due to the small sample size).  

Table 2: Results for the ALL disease group. 

 

Obs Distinct Ages Lk |Lk| q 

1 15 0.0000 0.0000 0.0000 

2 17 -0.7503 0.7503 0.1709 

3 18 -0.4232 0.4232 0.0964 

4 19 -0.7427 0.7427 0.1692 

5 20 0.2725 0.2725 0.0621 

6 21 -0.2736 0.2736 0.0623 

7 22 0.7416 0.7416 0.1690 

8 23 2.1637 2.1637 0.4930 

9 24 1.2171 1.2171 0.2773 

10 26 3.2475 3.2475 0.7399 

11 27 4.7287 4.7287 1.0773 

12 28 5.6822 5.6822 1.2946 

13 29 4.7785 4.7785 1.0887 

14 30 3.4222 3.4222 0.7797 

15 32 2.5916 2.5916 0.5904 

16 36 3.6068 3.6068 0.8217 

17 37 2.8075 2.8075 0.6396 

18 39 2.1071 2.1071 0.4801 

19 40 1.6014 1.6014 0.3648 

20 42 0.9737 0.9737 0.2218 

 

 In the case of AML-Low group, there are 26 distinct ages, any of which can be a 

potential cutpoint. There are 25 distinct times when death or relapse occurred which gives s
2
 = 

0.8827. The maximum value of |Lk| occurs at age 28 with q= 0.983. However, the high p-value 

(> 0.33) suggests that the cutpoint obtained is not significant. This is also the case for AML-High 

risk group (31 distinct ages, 33 distinct times when death or relapse occurred, s
2
 = 0.9035, q = 

0.1464, p-value ≥ 0.33). Note that in this example, both the graphical and the estimation 

approach gives the same cutpoint for the ALL disease group, however, this need not be true in 
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general. In situations when the estimated cutpoint is close to boundaries, one should carefully 

examine the reasons as the cutpoint obtained may be real or may be due to the presence of 

outliers.  

5. Discussion 

 Given the widespread use of categorizing a continuous covariate, there is very little 

attention given to this topic in statistical and epidemiological textbooks and in the literature. We 

have only focused on the dichotomization of a continuous covariate with the assumption that 

such a dichotomization is possible from biological point of view, however, in reality, more than 

one cutpoint may exist. Our current work provides an insight into some of the outcome-oriented 

cutpoint determination methods as well as SAS
® 

macros that provide p-values adjusted for 

examining multiple candidate cutpoints.  

 Ideally this cutpoint search has to be done within the framework of a multiple regression 

model to eliminate the potential influence of other prognostic factors on the cutpoint. As stated 

before, one has to be also aware of potential confounding that might arise from categorization 

and using open-ended categories [32]. The obtained cutpoint(s) may differ across studies 

depending on several factors including which data or outcome-oriented approach is used and 

therefore the results may not be comparable. Lastly, there is always the possibility of loss in 

information from categorizing a continuous covariate, possible loss of power to detect actual 

significance and can sometimes lead to biased estimates in regression settings, all of which need 

to be sufficiently addressed [33, 34]. 
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Appendix I 

                                                                   

%cutpoint(dvar=, endpoint=, data=, trunc=, type=, range=, fe=, plot=plot, ngroups=, 

padjust=, zoom=);                                                      
 
                               

This macro finds a cutpoint for a continuous variable when the outcome of interest is binary                     

 

Parameters:   

dvar = continuous variable to dichotomize              

endpoint = endpoint in question                         

data = dataset                                          

trunc = type of truncation of continuous variable   

 round - normal rounding                              

        int - moves to the integer in the direction of zero on the number line                    

          floor - moves to the next left integer               

           ceil - moves to the next right integer    

 type = type of iteration   

 integers - iterates to next integer of cont. var.    

            tenths - iterates to the next tenth                  

            hundredths - iterates to the next hundredth                                       

range = range of continuous variable                    

          fifty - inner 50% of cont. var. used for cutpoints   

          eighty - inner 80% of cont. var. used for cutpoints  

          ninety - inner 90% of cont. var. used for cutpoints            

fe = perform fisher’s exact test when expected cell counts are less than 5                            

 on - turns fe on                                     

           off - turns fe off                                   

plot = type of plot                                     

            plot: regular output window plots                    

            gplot: gplot output                                          

ngroups = number of groups to spilt the continuous      

           variable into (any integer > 1 and < n)          

padjust - p-value adjusting technique                   

            miller -                                             

zoom - zoom into the minimum p-value plot               

           yes - zooms into the lower half of the p-values      

            no - no zooming                                      

                                                                   

Sample code used for the example in section 3.0:                                                                      

libname dat v6 '~furth/consult/s101370/data';                                                             

%cutpoint(dvar=aceilst2, endpoint=mhypo30, data=dat.anal, trunc=round, type=integers, 

range=ninety, fe=on, plot=gplot, ngroups=10, padjust=miller, zoom=no);                                                             



 26 

 

 

Appendix II 

%findcut (ds= , time= , stat= , cutvar= , maxtime=, printop=, residop=, plottype=);                                                       

 

This macro finds a cutpoint for a continuous variable with a time to event outcome. 

                                                                   

 Parameters:                                                        

 ds = name of the dataset  

 time = variable containing the time to event information                                                    

 stat = the status or event indicator, for example, 1=event or 0=no event                               

 cutvar = the continuous variable for which the cutpoint is to be determined       

 

Optional Parameters:      

 maxtime = Time point (in days) to get % survival, default is 182.5 days (i.e. 6 months) 

 printop = basic summary statistics. 0 is default. 

                1=proc univariate on a continuous cutvar 

                2=proc freq on a ordinal cutvar 

                0=No print  

residop = Requests martingale residual plot. 

                0=No Martingale residual plot 

                1=plot Martingale residual plot 

plottype = Requests the minimum p-value and the maximum hazard ratio plots. 1 is default 

                0 = No plot 

     1=prints to the greenbar printer  

                2=prints to the Unix laser printer  

     (Note: This option may not be relevant for users outside of Mayo)                                                             
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