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Abstract 

This report contains the results of investigations into the 

operating characteristics of various nonparametric test procedures 

used when examining censored survival data. The procedures are all 

two-sample test statistics, and include the Gehan-Wilcoxon, Log-Rank, 

and some new Smirnov-type statistics recently developed. These Smirnov- 

type statistics will be referred to as the Generalized Smirnov and 

Gl,N2 procedures. (NL and N2 are the two sample sizes, and a 2 0 

is a free parameter.) 

Let Sl and S2 denote two survival distributions. When testing 

HO: s1 = s*, theoretical considerations and Xonte Carlo results 

support the conclusion that for 0 ( a Cl, the 
KP11,N2 

procedures have excellent 

sensitivity CO detect crossing hazards departures from HO in which substantial 

survival differences exist later, but not earlier in time. Furthermore, 

G1'N2 
procedures for a > 2 have excellent sensitivity to detect 

acceleration alternatives, that is, large early survival differences 

which disappear quickly in time. The Generalized Smirnov procedure 

turns out to be more versatile than the I$ 
l'N2 

procedures, providing 

good power generally against any of the crossing hazards alternatives 

examined. The Cehan-Wilcoxon and Log-Rank turn out to have relatively 

low power against most of the crossing hazards alternatives examined. 
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0. Introduction 

This report transmits ali the results obtained by Thomas R. Fleming 

of the Mayo Clinic, Rochester, Minnesota and David P. Harrington of 

the University of Virginia, Charlottesville, Virginia on the project 

for Ebon Research Systems described in FDA Task Order Number 5. The 

primary purpose of the project was to evaluate the operating characteristics 

of some newly proposed test statistics useful in comparing two samples 

of censored survival data, and to compare these characteristics with 

those of certain statistics which have been in common use. The investigation 

was for the most part limited to underlying survival distributions with 

crossing hazard functions, i.e., survival distributions for which 

substantial differences evident at one point in time fail to exist 

at other points in time. 

The outline of this report is as follows. Part I provides some 

general background information essential for understanding the specific 

numerical work done on this project. The new Smirnov-type test 

statistics we examined are defined in Part I, and the important known results 

about these statistics are summarized there. Part II describes the specific 

configurations of censoring and survival distributions that were 

used to produce Monte Carlo simulations of two-sample censored 

survival data; these simulations were used to evaluate the size and 

power of hypothesis tests based on the statistics studied. Part III 

contains a summary of the results of the simulations. Recommendations 

are given in Part III on how to pick the most sensitive test statistic, 

from among those considered, for detecting an anticipated difference 
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in two underlying survival distributions. Complete tables of all 
I 

I ’ the simulation results can be found in Part IV. Parts V and VI 

I contain references and an appendix, respectively. 
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I. Background Information 

A detailed summary of the theoretical basis for much of the work 

done on this project can be found in the Preliminary Report submitted to 

Ebon. For the sake of brevity, we will only restate here the information 

from the Preliminary Report which is essential to understanding the results 

of the project. 

A. Crossing Hazards Alternatives. 

Suppose X11, Xl*, . . . . XINl and X21, Xz2, . . . . XzN2 are two independent 

samples of failure time random variables. These variables usually 

denote the time to a prespecified event (e.g., time to tumor progression) 

for each experimental unit in a study. In most survival studies, 

the failure time of each experlmental unit may be censored, so let 

(Yll, Y12, . . . . YINl) and (Y21, Yx2, . . . . YzN,) denote the censoring 

times of the experimental units. For each experimental unit in the 

study, the observed data are UsUallY Tij = min (XiJv Yij) and 

6 ij = I[X. < Y..], where I[A] = 1 if the event A occurs, and 0 otherwise; 
lj- 11 

we will take this alr;ays to be the case. For simplicity, we will 

assume X.. and Y 
1J ij are statistically independent, although all results 

obtained continue to hold under the less stringent assumption detailed 

in Fleming and Harrington (1979). 

Let Si(t) = P(Xij > t),i=l,Z; the most commonly encountered 

hypothesis test in the analysis of failure time data is Ho: Sl(t) = S,(t) 

for all t. If the alternative of interest is Hl: S,(t) < S,(t) over 

some interval in t, the alternative is called one-sided. The general 
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alternative Hl: S,(t) # S,(t) for some values of t is called 

two sided. The alternative hypotheses to the basic null hypothesis are 

clearly very complicated composite hypotheses. It is not realistic 

to expect that a single testing procedure would be adequately powerful 

against all alternatives of interest. 

A particular type of alternative that may arise is called the 

"crossing hazards" alternative. If w,(t) = - $-+r Si(t), i=l,Z, 

then vi(t) is called the hazard rate or intensity function of the 
t 

survival distribution Si(t). Bi(t) = / vi(s)ds is called the cumulative 
0 

hazard function, and it is well known that Si(t) = exp[- Si(t)]. Now, 

when two underlying survival distributions have hazard functions which 

cross at some point, then the survival curves will exhibit differences 

over a time interval, but those differences may disappear outside 

that interval. For example, at a fixed value to it is clearly possible 

that one might have 81(to) = B2(tO) (and hence Sl(tO) = S2(to)) even 

though 31(t) >> 62(t) (and hence S,(t) CC S,(t)) at some t < to. 

This will happen if the hazard functions cross at a point prior to time 

to in such a way that the areas bounded by each of hazard functions 

and the time axis betweeu t = 0 and t = to are equal. This particular 

type of departure from the null hypothesis in which substantial early 

survival differences disappear later in time has been called the 

"acceleration alternative". The preliminary report for this project 

contains on page 2 a sketch of crossing hazard functions and the 

associated survival functions S,(t). 



The crossing hazards phenomenon can often go undetected by test 

, statistics that depend upon cumulative differences in the survival 

functions or, more specifically, cumulative differences in the hazard 

functions. The Gehan-Wilcoxon and the Log-Rank statistics are of 

this type. It is reasonable to expect, though, that procedures based 

upon maximum observed differences (perhaps weighted in some fashion) 

in empirical survival functions or empirical cumulative hazard rates 

might be more likely to detect crossing hazards alternatives to the 

null hypothesis HO: S,(t) = S,(t) for all t. Such procedures are 

usually called Kolmogorov-Smirnov-type (or just Smirnov-type) procedures 

because of the well known goodness-of-fit test based on the maximum 

observed difference between empirical and hypothesized cumulative 

distribution functions. Two kinds of Smirnov-type procedures have 

been proposed in the manuscripts by Fleming and Harrington (1979) 

and Fleming, O'Fallon, O'Brieqaand Harrington (1979). '(These manuscripts 

can,be found in the appendixes of the Preliminary Report.) It is 

the sensitivity of these procedures that was investigated in this 

project. Specific definitions and properties of these test statistics 

are given in the next subsection. 

B. The mew Smirnov-Type Procedures. 

The Preliminary Report gave a detailed account of these new 

Smirnov type procedures, including both a theoretical and 

heuristic discussion. We will limit ourselves here to careful 

definitions of the procedures, and a complete statement of the 

asymptotic distribution theory used to obtain significance levels of 

the test statistics. 
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The asymptotic distribution theory of the Smirnov-type statistics 

provides the most naturaiway to classify the statistics. The procedures 

described in both Fleming,et.al. (1979) and Fleming and Harrington (1979) 

are based on suprema of approprrately scaled empirical processes. The 

processes used in the first manuscript have asymptotic distributions 

which have the variance-covariance structure of a time transformation 

of a Brownian bridge, while those used in the second paper have 

asymptotic distributions of time transformations of a Brownian motion. 

We will discuss the Brownlan bridge type procedure first. 

1. Rrownian Bridge Type Procedure. 

Let X.., Y.. and T.. be the failure time, censoring time,and 
13 11 11 

observed random variables, respectively, that were discussed earlier. 

The following notation was established in the Preliminary Report, 

but we review it here for the sake of completeness. Let: 

sp = P(X.. ' t) 
11 

Ci(Q = P(Y.. ' t) 
IJ 

ri(t) = P(Tij ' t) 

V,(t) = - dt %n Si(t) 

vi(t) = - &Ln ci(t) 

t 
Q(t) = 1 vi(s)ds 

0 

t 

ai = 1 Yi(.s)ds 
0 

Ni(t) = number of experimental units in sample i still under 

observation just prior to time t (i.e., the sizeof the 

risk set in sample i at time t) 

6 
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D,(t) = number of deaths observed in sample i at 

time t 

"ij = IIXij ( Yijl (IhI is the usual indicator random 

variable of the event A.) 

i+t) = 1 
j:Tij<t 

[Ni (Tij)]-1 6... (This is the 
13 

Nelson empirical cumulative hazard rate estimator 

of Bi(t) for untied data.) 

+ = 1 
j:Tij<t 

[N~(T~~)I-’ Cl-sij). (ai is the 

Nelson empirical estimator of ai(t 

ii(t) = exp [- a,(t)] 

iii(t) = exp [- ii(t)] 

Observe that we have allowed the censoring distributions Cl and C2 to 

differ from one another. 

We define the empirical process 

Y N y (t) = +r+, + S2(t) 1 
1” 2 

YN N (t) to be 
'19 ? 

1. 
-' d(il (d-i2 (s)). 

(Recall that Nl and N 2 are the two sample sizes; we always take 

f(s-) = lim f(a) for any function f(s).) 
a4s . 

The Preliminary Report discusses why we believe that a test 

statistic based on sup YNl,rJ2 (t) should provide a particularly sensitive 
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test for detecting onc- or two-sided crossing hazards 

type aiternatives in situations where the underlying survival distributions 

exhibit their most substantial differences in the middle portion of the 

survival curves; i.e., at those values of t for which Si(t) = .5. This 

conjecture is supported by the results summarized and tabulated in 

Sections III and IV. The calculation of approximate P-values using 

sup yN pr' (t) is made possible by the following theorem, the proof 
t 1' 2 

of which may be found outlined in Fleming, et.al. In the statement 

of the theorem, "+" refers to weak convergence in D[O,r], the space 

of functions on an interval [O,r] with discontinuities of at most 

the first kind. 

Theoren. Let O<t<r, where T is such that si(r)>O, i = 1,2, -- 

and let W= (W(t): t:O) be a standard Wiener process. Let S(t) be 

the common but unspecified value of Si(t), i=1,2, under.HO, and take 

w,(t) to be the time transformed Brownian bridge defined by 

W,(t) = W(l-s(t)) - [l-s(t)lw(1). 

Then, under Ho, 

(‘N N 
(t): O<t<r~~Ws E (W,(t): O’t(T1 

1'2 -- 

as h'l,N2 -KO in such a way that lim N /N = A, O<Xcm. 
N-1 2 

1 

The above weak convergence result implies that 

I- lim P 1 
Nl,N2- 

,<;;", 'N1,Nzct) ' a 

i I 

= Prsup Us(t) 
oit<r 

1 

> al, 
- - - - J 
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The specific formula used to calculate the probability on the 

right hand side of the above equation. along with the computational 

algorithm used to calculate sup Y 
%'N2 

(t) , can be found in Section 3.1.3 

of the Preliminary Report. 

2. Brownian Motion Type Procedure. 

The notation established in the previous subsection holds here as 

well. In addition, we will need the following notation: 

i- Nl+-) N2$s-) 4 

~l,?12(d = ' * 

1 

" 
NICl(s-) + N2C2(s-) , 

$ I (s,w)a + (i2(s-))al 

J 

where a is a fixed nonnegative parameter. (Corresponding to each value 

of o will be a unique test procedure). 

We define the empirical process Ba 
NlJ2 

(t) to be 

Ba 
N1,N2 (t) = It ~l,lq2(d d(+d - i,(d), 

0 

and we let Ba 
NlSN2 

denote the stochastic process {Ba Nl'N2 
(t): Oct<rl. 

- - 

The following asymptotic result is essential in formulating a Smirnov-type 

procedure based upon the process Ba Nl,N2' 

Theorem. Let S(s) be the common value of Si(s), i=l,?.. under HO, 

and let (W(t), t:O] be a standard Brownian motion. 

Then, under HO, 

Bil,WF XaZ(Ba(t) = /~(S(S))"-~ 
1; 

(v(s))-dW(s): _ _ O<c<r>, 
0 

where 7 is such that 1~l(r)>0, i=1,2, and N1,N2m so that N1/N2+A, O<X<m. 

If (oa(t))2 is a consistent estimator of o:(t) : Var Ba(t), 

then the above result implies that (o,(r))-l Bi N (t), O<tCr,has, 
1' 2 

9 



I . 

for large sample sizes Nl and N2, approximately the distribution of a 

time transformed standard Broknian motion on [O,?]. Therefore, we have, 

for any value a, that 

* 
lim 

N1J2- 
p (o,W> 

-li- 

1 

o;w, 3j;l,N2(t) 2 ;i = P i-k+W(u) ?a] . 
-- 

A Kolmogorov-Smirnov type procedure can therefore be based on the observed 

value of $l,N 
e 

: ("o(r)) 
-1 

sup 
2 'ii N (t), with significance levels 

O<fsT 1' 2 -- 

computed according to the right hand side of the above equation. For 

reasons explained in the Preliminary Report, the particular consistent 

variance parameter estimate we have chosen is 

(;,(T))~ = IT [N1+-) + N,;,(s-)]-~ +[+-)la + 6,(~-)1~)}~ 
0 

The complexity of the statistic 5 
l'N2 

appears at first glance 

a bit overwhelming. Each of its component pieces, however, can be 

easily motivated and such explanations can be found in pages lo-18 of the 

Preliminary Report. To understand the numerical results found 

Sections III and IV it is essential only to be aware of the ro 

a is a free parameter which is constrained to be nonnegative. 

in 

le a p 

If 

lays. 

a>l, tends to emphasize nonzero values of the difference 

^ I 
S2(u) - Sl(u) for those values u at which Si(u) r 1; such differences 

are often called early differences. The greater the value of a, 

the more emphasis placed on early differences. Such an emphasis, however, 

will always cause a corresponding de-emphasis of differences observed at 



other time points, and the larger the value of a, the more t 
YN2 

Will 

1 
. A 

discount differences in S2(u) - Sl(u) at points where Si(u) Ccl, i=l,Z. 

Procedures based on small values of a<l. on the other hand, emphasize changes 
^ A 

in the difference S2(u) - sl(u) which occur when Si(u) : 0, i=l,Z, 

i.e., differences which are said to occur later in time. 

. 

. 

The qualitative role of a is supported by both the asymptotic 

theory and heuristic explanations of the test statistic (see Preliminary 

Report). Until this project, however, we had very little intuition 

about how large or small a must be to provide acceptable power against 

specific instances of crossing hazards alternatives. Although we 

are still a long way from a complete quantitative understanding of 

the role of a, the results tabulated in the next two sections provide 

I ” 

. 

a very good beginning at establishing guidelines for a judicious choice 

of a. 

\Je feel it is important to emphasize a point here regarding the 

choice of a. The parameter a is a component of the statistic $ 
1’?‘12 

that should be specified by a researcher in advance of seeing the 

data. If a data analyst chooses to use I$ 
lYN2 

and feels that it is 

of utmost importance to detect differences in underlying survival 

distributions which occur early in time, then a should be chosen as 

large as is prudent (a = 2 is nearly always large enough.) To examine 

the data first, however, before choosing a would be irresponsible 

"datn dredging", since it is clear that with a clever choice of a, 

very many data sets can be shown to contain statistically significant 

differences between underlying survival distributions. 

11 



Both the Brownian motion and the Brownian bridge based procedures 

are clearly complex statistics. The asymptotic distribution theory 

only tells us how to construct hypothesis tests of a given size; analytic 

power calculations seem nearly impossible at this stage. Monte Carlo 

simulations seem to be the only manageable means of determining the 

power of these procedures in some representative situations. Furthermore, 

the simulations provide a method to determine if the true size of 

these test procedures in small and moderate samples is accurately 

approximatad by the nominal significance level based upon the appropriate 

asymptotic distribution theory. The configurations of censoring and 

survival distributions used to produce the simulations are briefly 

described in the next section, and specified in detail in Section IV. 

All random variables generated in the configurations were produced 

by transforming uniform random variables generated with the linear 

congruential method (Knuth, 1969). 

I .d 
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The exact formulas for the hazard rates of the survival distributions 

, and for the censoring dfstribution functions employed in generating the 

censored survival data are given in Section IV with the tabulated 

results. We feel it is important, however, to explain the general 

strategy used in choosing the specific distributions, and to give 

a sunnnary of the kinds of distributions chosen. The reader will 

then be able to judge Section III, The Qualitative Summary of the 

Results, more critically. 

We used seventeen distinct configurations of survival and censoring 

distributions in all, with each configuration including two survival 

distributions used to generate the two independent samples of failure 

times, and a single censoring distribution used to generate the 

two independent sanples of censoring times. All censoring and survival 

random variables were generated independently, with each observation 

time taken to be the minimum of a survival and a censoring random variable; 

that is, Tij = min (X ij, Yij) (as indicated earlier). The sample sizes 

Nl and N2 of the two independent samples used for testing HO: Sl = S2 

were taken to be equal for a given simulation. For each configuration 

two distinct values of the common sample size N i were inspected. Five 

hundred pairs of samples (one thousand pairs of samples when evaluating 

size) were generated for each selected configuration of survival 

and censoring distributions for the two populations and for each 

sample size. The proportions of sanples in which each one-sided 

test procedure under consideration rejected HO at the a = 0.01 and 

13 



a = 0.05 significance levels were calculated for each configuration 

, at each sample size. 

In all except two cases, the survival distributions chosen possessed 

piecewise constant hazard rates, and thus were piecewise exponential 

distributions. The two exceptions were configurations 8 and 12 

which contained one or more Weibull survival distributions with a 

shape parameter different from one. Semi-logarithmic plots of the 

survival functions can be found in Section IV with the tabled results. 

The configurations chosen fell into three main categories: 

1. The null hypothesis class of distributions, i.e., configurations 

in which Sl = S2. 

2. Representative classes of either commonly arising crossing 

hazards alternatives, or proportional hazards alternatives. 

3. Distributions which could reasonably be considered to have 

generated the FDA 165-174 or 165-150 mouse study data. ' These 

configurations enabled us to evaluate the power of the Smirnov-type 

procedures as well as the power of the Cehan-Wilcoxon and the Log-Rank 

procedures in situations that were of particular interest to the FDA. 

We will now summarize the kinds of configurations used in each of the 

above categories. 

Of the seventeen configurations used, the first six fell into 

category 1. In configurations 1, 3 and 5, equal exponential survival 

distributions with constant hazard rates X = 2,1 and 0.5 respectively 

were used with a censoring distribution that produced only terminal 

censoring, that is, Y.. = T, a constant, for all i and j. 
1J 

Configurations 
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2, 4 and 6 were generated using the same three exponential survival 

, 
distributions listed above. Here, however, the censoring distribution 

was chosen to be a truncated uniform distribution (see Figure 4.2) 

which was selected to replicate as closely as possible the type of 

censoring distribution that was observed in the time-to-RR-tumor 

data of FDA study 165-174. With this approach, we were able to inspect 

the true size of the various test procedures in data which was lightly, 

moderately or heavily censored; specifically, the expected percents 

censored in configurations 1 through 6 were 13%, 25%, 37%, 47%, 61% 

and 68% respectively, In category 1, configuration 6 most nearly 

approximates the actual configuration seen in FDA study 165-174, and 

hence enables us to inspect the true sizes of the procedures in the 

actual setting in which we are currently most interested. In each 

of the first six configurations, simulations were performed separately, 

first for Nl = N2 = 20, and then for N1 = N2 = 50, since the intent 

was to inspect in small and moderate sample sizes the behavior of 

procedures whose significance levels were determined using appropriate 

asymptotic results. 

Configurations 7 through 12 fell into category 2. Each of these 

configurations had the truncated uniEorm censoring distribution 

identical to that employed in configurations 2, 4 and 6. Configuration 

7 presents a "proportional hazards" or "Lehmann" alternative. Specifically, 

two exponential distributions representing a doubling in median survival 

were generated. This configuration was chosen to enable us to 

compare the behavior of the Smirnov-type procedures to that of the 

Log-Rank in the situation in which the latter test procedure would be expected 

15 



to have its greatest relative sensftivity. (see Pet0 & Feto (1972)). 

Configurations 8, 9 and i2 present departures from the null 

hypothesis in which substantial differences existing between survival 

distributions later in time fail to exist early in time. By inspecting 

the formulas for the Gehan-Wilcoxon and Log-Rank test statistics, 

as we will do in Part III, it is quite clear that the Gehan-l!ilcoxon 

procedure will have unacceptable power and the Log-Rank procedure 

generally marginally acceptable power to detect this type of crossing 

hazards alternative. Configuration 8 used two Weibull distributions 

in which S,(t) >> Sl(t) for large t even though S,(t) is slightly 

less than S,(t) for t Z 0. This type of departure from HO could be 

expected to arise when one is comparing the survival of aggressively 

treated patients with coronary heart disease to that of patients 

treated more conservatively. Configuration 9, comprised of two 

piecewise exponential distributions, is very sinilar in form to 

configuration 8 except for the fact that Sl(t) = S,(t) for small t. 

Thus, configuration 9 ~~11 enable us to determine whether any additional 

power the Smirnov-type procedures may have over the Log-Rank procedure 

in configuration 8 will still exist in a situation in which Sl(t) < S2(t) 

for all t and in which the hazard functions technically don't cross. 

Configuration 12 is again similar to configuration 8. However it 

uses two Neibull distributions, one with an increasing and one with 

a decreasing hazard function, having enormous survival differences 

later in time. 

16 
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Configurations 10 and 11 both present crossing hazards alternatives 

to the null hypothesis where all survival distributions are piecewise 

exponential. In configuration 10, large differences exist between 

survival curves over the middle range of the survival distribution 

although Sl = S2 for both small t and large t. Configuration 11 

presents the situation in which large early differences between 

survival curves disappear somewhat later in time. These types of 

departures from the null hypothesis, sometimes referred to as "acceleration 

alternatives", are commonly observed when one is comparing survival 

or time to progression of disease curves for two chemotherapeutic 

or radiation therapy anti-tumor regimens in perspectively randomized 

clinical trials. From the formulation of their test statistics, we 

would anticipate the Log-Rank procedure to have unacceptable sensitivity 

to these departures, while the Gehan-Wilcoxon procedure should have 

marginally acceptable power against configuration 11. Here, as 

throughout configurations 1 through 12, we inspected both small and 

' moderate sample size behavior, that is, we generated sample sizes 

Nl = N2 = 20, and then N1 = N2 = 50, 

The last five configurations (13 through 17) are members of category 

3. The data from mouse study 165-174 was used to construct survival 

and censoring distributions in 13, 14 and 15. The time scale was 

taken so that 1 unit = 100 weeks. The censoring pattern was essentially 

the same as the one used in configurations 2. 4, 6 and 7 through 13. 

Specifically, the censorship distribution was a truncated uniform 

distribution having a lag time of 60 weeks and complete censorship 

17 



at 111 weeks (see Figure 4.15). This distribution was chosen since 

it was found to very nearly approximate the Kaplan-Meier estimates 

of the censoring distributions for both the female control group 1 

and the female high dose Red dye #40 group in the time-to-RR-tumor 

data for study 165-174. Configuration 13 used piecewise exponential survival 

models to approximate the actual departure from the null hypothesis 

that was observed in the female mice from study 165-174 when Kaplan-Meier 

estinates of tine-to-RX-tumor curves were generated for the pooled 

control groups and then for the low dose Red dye 840 group (see Figure 

4.16). The maximum difference of 0.12 between these curves occurs 

at t = 1.08. Configuration 14 used similar piecewise exponential 

survival models, but enlarged the maximum difference at t = 1.08 

to 0.20. In configuration 15, this difference was enlarged still 

further to a difference of 0.27. The survival curves in 15 were each 

within reasonable confidence bands which could be constructed about 

the corresponding Kaplan-Meier estimated time-to-RE-tumor curves 

given in Figure 4.16. The sequence of configurations 13 through 

15 allows us to examine the dependence of the power functions of 

Snirnov-type, Gehan-Wilcoxon and Log-Rank procedures on the degree 

of difference in survival distributions for crossing ‘hazards alternatives 

of this type. 

Configurations 16 and 17 were modeled after the 165-150 mouse 

study. The censorship distribution was a truncated uniform distribution 

which would have closely approximated the actual censoring distributions 

in the control, low dose and medium dose groups of female mice if no 

18 



interim sacrifice had been performed (see Figure 4.17). Configuration 

, 16 used Piecewise exponential survival curves to approximate the actual 

departure from the null hypothesis that was observed in the female 

mice from study 165-150 when Kaplan-Meier estimates of time-to-PJ-tumor 

curves were generated for the control group and then for the pooled 

low, medium and high dose Red dye 11!40 groups (see Figure 4.18). The 

maximum difference of 0.11 between the curves occurs at t = 0.91. 

Configuration 17 enlarged the observed maximum difference of 0.11 

to 0.17 at t = 0.91 to examine, as before, the change in power 

caused by a change in the true difference between the survival curves, 

In mouse study 165-150, 50 animals of each sex were entered in each dosage 

group. Twice that number were entered in study 165-174. Hence in configurations 

13 through 17, simulations were performed separately, first for N1 = N2 = 50, and 

then for N 1 
= N2 = 100. This, for exanple, enables power calculations for the 

situations in study 165-150 in which pooling by sex was'not and was done respectively. 

It should be noted that the intent in configurations 13 through 

17 of our Honte Carlo investigation was not to prove or disprove 

that substantial evidence exists to support a hypothesis concerning 

the carcinogenicity of Red dye #40. Rather, our intent was solely 

to evaluate for future experiments the general behavior of certain 

test procedures. Specifically,we wanted to compare their ability 

to detect certain meaningful types of crossing hazards alternatives 

to the null hypothesis that may have truly existed in the Red dye r/40 

mouse experiments. 
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III. Qualitative Summary of the Results 

A. Gehan-Wilcoxon and Log-Rank Test Statistics 

Before discussing the results of the Monte Carlo simulations, 

it will be useful to briefly review the general form of the Gehan- 

Wilcoson and Log-Rank two sample test statistics. For simplicity 

we will momentarily assume no ties exist in the data. Previous authors, 

including Prentice and r!arek (1979), have observed that the Log-Rank test 

statistic can be formulated as 

(i;,)-’ jE, cDl(Tj) - 
NIU.) 

Nl(Tj) + N2(Tj+ (4.1) 

where CT;: j=l, . . .,d) is the set of d distinct observed death 
J 

times in the pooled sample, and 

Furthermore, the Gehan-Wilcoxon 

A  

uLR is an appropriate variance estimator. 

test statistic can be formulated as 

N, CT;) 

jfl 'Nl(Tj) + N2(Tj)} (Do - .L Nl(Tj) 1 N2(Tj) ' (4'2) 

^2 
where again uGW is an appropriate variance estimator. 

Inspection of (4.1) reveals that the Log-Rank test statistic 

can essentially be viewed as a weighted difference, where the difference 

is between the "total observed deaths" in one samp1.e and that sample's 

"total expected deaths given II0 holds". Now, on the average the 

observed number of deaths in sample i will exceed the expected 

number of deaths under II 0 in any interval in which 

population i has the greater hazard function. The reverse will hold 

over intervals in which population i has the smaller hazard. Therefore, 

one would not anticipate that the Log-Rank test will be particularly 
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sensitive to crossing hazards alternatives. For similar reasons, inspection 

of (4.2) leads one to speculate that the Gehan-Wilcoxon test procedure 

also will lack sensitivity to that type of departure from HO. 

Interestingly, because the Gehan-Wilcoxon statistic differs from the 

Log-Rank statistic primarily because of its weighting factor 

. 
iNl(Tj) + 1.12(Tj)I (see (4.31, we anticipate the Gehan-Wilcoxon 

procedure will have greater sensitivity than the Log-Rank procedure 

to departures from H 0 which are most evident early in time. However, 

the Log-Rank will have the greater sensitivity to those differences 

most evident later in time. 

B. Results of Category 1 Simulations: Size 

Results of simulations for all configurations 1 through 17 appear 

in Tables 4.1 through 4.17 respectively. In each configuration 

the behavior of eight one-sided test procedures were inspected; 

specifically, the Smirnov-type procedure based upon an underlying 

Brownian bridge process (hereafter exclusively referred to as the 

Generalized Smirnov procedure), the Smirnov-type procedures based 

upon an underlying Brownian motion process and corresponding to 

a = 0,1,2,3 and 4 (procedures hereafter referred to as $ 
lYN2 

procedures), 

and finally the Gehan-Uilcoxon and Log-Rank procedures. 

Results pertaining to size of these procedures are presellt-d 

in Tables 4.1 through 4.6 respectively. Overall, the Generalized 

Smirnov procedure comes very close to the nominal 0.01 level at both 

Ni = 20 and Ni = 50, but is slightly conservative at the 0.05 nominal 

level. In comparison the $ 
VN2 

procedures for o = 1,2,3 and 4 
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are quite conservative at N. 1 = 20, but comparable in size to the 

Generdifzed Snirnov procedure in Samples Of size Ni = 50. Interestingly, 

the 
sl.N2 

procedure is very conservative at both Ni = 20 and Ni = 50, 

much like the small sample behavior of classical Kolmogorov-Smirnov 

statistics in uncensored data. 

C. Results of Category 2 Simulations: 

General Crossing Hazards or Proportional Hazards Alternatives. 

In Table 4.i it is clear that the Log-Rank test procedure is, as 

we would anticipate,most sensitive in detecting proportional hazard 

alternatives. However, its gain in power is not large. For example, 

when N. = 50 and the nominal level is 0.05, the power of the Log-Rank 

is 0.85, of the <1,112 is 0.83, of the Gehan-Wilcoxon is 0.82 and of 

the Generalized Smirnov is 0.80. Interestingl.y, of all the Kz 
lPN2 

procedures 

considered is the most powerful against the Lehmann alternative. 

Tables 4.8, 4.9 and 4.12 present results for departures from the 

null hypothesis in which substantial differences existing between 

survival distributions later in time fail to exist early in time. 

As we anticipated, the Log-Rank has marginally acceptable power against 

these alternatives, far better than the unacceptable power of the Grhan- 

Wilcoxon procedure. In turn, however, the Generalized Smlrnov procedure 

has power clearly better than that of the Log-Rank. The power of the 

GIJ, 
procedures to detect these later differences depends dramatically 

6. 

upon the choice of a. The procedure based upon < 
PN2 

is the most sensitive 
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of all eight test procedures in each of the three configurations. 

Possibly the most interesting of the three configurations is 89 since 

here S,(t) 2 S,(t) for all t. When Ni = 50 and looking at the 0.05 

level, the power of the Cehan-Wilcoxon is only 0.25, compared to 

0.69 for the Log-Rank and 0.85 for the Generalized Smirnov, a marked 

reversal of the relative power of the latter two procedures from that 

which existed in the proportional hazards setting. The $ N , K2 
1' 2 VN2 

and 
$J2 

procedures had powers of 0.95, 0.35, and 0.10 respectively, 

providing clear evidence of the powerful effect of the free parameter a. 

The Generalized Smirnov procedure is unquestionably the most 

sensitive procedure in detecting large differences between survival 

curves over the middle range of the survival distribution, as shown 

in Table 4.10. When an "acceleration alternative" exists, that is, 

when large early differences between survival distributions disappear 

later in time as in Figure 4.11, the Generalized Smirnov procedure 

agaln is considerably more sensitive than both the Gehan-Wilcoxon 

and Log-Rank procedures. The powers of these three procedures 

for N i = 50 at the 0.05 level are 0.82, 0.52,and 0.21 respectively. 

Further ' #,,N, and <,,N, had powers of 0.12 and 0.84 respectively, 

again providing clear evidence of the dramaticeffect the parameter a 

can have in the ability of $ 
P2 

to detect crossing hazards departures 

from Ho. The power of Ki1,N2 to detect "acceleration alternatives" 

is substantially increased by choosing larger a values, as we concluded 
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earlier from theoretical considerations. 

D. Results of Category 3 Simulations: 

Acceleration Alternatives in FDA Mouse Studies 

Results of configurations 13 through 15, modeled after data from 

mouse study 165-174, and results of configurations 16 and 17, modeled 

after data from mouse study 165-150, are presented in Tables 4.13 through 

4.17. 

These results cleariy confirm earlier conclusions, based upon 

theoretical considerations, that the Log-Rank procedure has unacceptable 

sensitivity and the Gehan-Wilcoxon only marginally adequate sensitivity 

to detect "acceleration alternatives". In fact the power of the 

Gehan-Wilcoxon becomes considerably less acceptable relative to the 

power of the Generalized Smirnov or I$ 
sN2 

(for CY = 2,3 or 4) procedures 

as the magnitude of the acceleration alternative increases, 

When dealing with samples of size 100 (as would be the case in study 165-150 

with pooling by sex and in study 165-174 if pooling by sex is not performed) and using 

CL = 0.05 level tests, both the Generalized Smirnov and $ 
y?12 

(for 0: = 2,3 and 4) 

procedures appear to have reasonably good power to detect the type of 

acceleration alternatives seen in studies 165-174 and 165-150 if 

the maximum separation between curves is at least 0.17 to 0.20. 

The results of these specific configurations are given in Table 4.14 

for study 165-174 and in Table 4.17 for study 165-150. 

Data presented in Tables 4.13 through 4.17 confirm earlier 

theoretical conclusions that KU 
Nl,N2 

procedures with a > 1 have much 
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greater power to detect large early survival differences which disappear 

. 
later in time thdn procedures with a 2 1. it is of interest to look 

more closely at results in Tables 4.14 and 4.17. As stated earlier, 

they present two acceleration alternatives in which the maximum 

separation between curves is of the same order of magnitude. However, 

In Table 4.14 the increase in power corresponding to an increase in 

a is less than that observed in Tables 4.17 for an equivalent increase 

in o. This is due to the fact that the maximal separation between 

curves occurs "sooner" in configuration 17 than in configuration 14, 

specifically 0.97 vs 0.80 as opposed to 0.83 vs 0.63. This provides 

further testimony to the dramatic ability of the parameter o to 

deter-mine precisely over what intervals the procedure $ 
p* 

has its 

greatest sensitivity to detect departures from Ho. 

E. General Recommendations 

From the results obtained from theoretical considerations as 

well as Monte Carlo simulations, it is quite clear that 
Gl.N2 

procedures 

for a < 1 have excellent sensitivity, unsurpassed by any other two- 

sample test procedures considered,to detect crossing hazards departures 

from Ho in which substantial survival differences exist later, but 

not earlier, in time, (see, for example, Tables 4.8, 4.9 and 4.12). 

Furthermore, 
5pr, 

procedures for a of two or greater have excellent 

sensitivity to detect acceleration alternatives, that is, large early 

survival differences which disappear quickly in time, (see, for example, 

Tables 4.11 and 4.13 through 4.17). 
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Unfortunately, as one might expect, individual 5 
VN2 

procedures 

for a # 1 lack the versatility of having good power against crossing 

hazards alternatives of all forms. Specifically y;No 
lJ2 

has relatively 

low power in configurations 11 and 13 through 17, while $ 
VN2 

for a = 2,3 or 4 has low power in configurations 3, 9 and 12. 

However, this versatility of good power against any substantial 

crossing hazards departure from HO certainly is a property of the 

Generalized Smirnov procedure, In every configuration 8 through 17, 

the Generalized Smirnov procedure has either the best or close to 

the best power of any of the eight procedures considered. For this 

reason, we would generally recommend that the Generalized Smirnov 

procedure be employed when one is interested in detecting crossing 

hazards alternatives to HO, including the “acceleration alternative”. 

We hasten to point out that we do not mean to imply that the Generalized 

Smirnov procedure is always superior to the Gehan-Wilcoxon or Log-Rank 

procedures relative to any departure from the null hypothesis. The 

latter two procedures are classical procedures each having been showu 

to be very powerful in their abilities to detect certain types 

of differences between survival distributions. Hence, the Generalized 

Smirnov procedure should be viewed as complementing the Gehan-Wilcoxon 

and Log-Rank procedures and not as a competitor. The procedure one 

chooses to use to test for the equality of two survival distributions 

will therefore depend upon the type of distributional differences 

for which one desires particular sensitivity. In conclusion the 

. 
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Generalized Smirnov procedure would appear to be the appropriate 

choice vhen one vishes to have scnsi” ~~.viij: to differences which 

are large at some point in time, independent of the type of differences 

existing elsewhere. Thus, it would appear from our results that the 

Generalized Snirnov procedure would be the most appropriate of the 

procedures which we have considered to test for substantial “acceleration 

alternatives” to the null hypothesis. 
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IV. Tabled Results of the Simulations 

In tabulating the results of the simulations, we have opted for 

clarity at the espense of economy. The following pages contain seventeen 

tables, numbered 4.1 - 4.17; each table presents the simulation results 

(estimated size or estimated power) for a single configuration of censoring 

and survival distributions. Each tabled value is the observed proportion 

of times that the indicated test statistic produced a significance 

level less than or equal to the given nominal significance level 

(either a = .Ol or a = .05). Appropriate sample sizes are indicated 

in the table headings, and the number of replications or simulations 

used in computing the proportion of rejections of Ilo is given at the 

top of the page. The Brownian bridge type procedure is referred to 

as the Generalized Smirnov procedure, while the specific choices of 

the Brownian motion procedure are labeled Ka, a = 0,1,2,3 and 4. 

Tables 4.1 through 4.12 each appear on a separate page, with 

graphs of the relevant censoring and survival distributions given in 

a figure just above each table. The graphs for the simulations based 

on the FDA mouse study data are a bit more complex, and were thus 

displayed separately. Figure 4.13 shows the three separate configurations 

of survival and censoring distributions from the 165-174 mouse study 

data. So as not to clutter the graphs, important values of the hazard 

and survzval functions are given on the next page, while the three 

pertinent power tables (4.13 - 4.15) fol.low on the next two pages. 

The distributions estimated from the 165-150 mouse study data are 

shown In Figure 4.14; power Tables 4.16 and 4.17 again follow the page 

of hazard function and survival function values. 
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The last four graphs of this report follow Tables 4.16 and 4.17. These 

graphs are iabeied Figures 4.15 through 4.18 and :hey show the Kaplan- 

Meier estimates of censoring and survival curves from the FDA mouse 

study data used to construct the distributions for configurations 

13 through 17. Figures 4.15 and 4.16 show the empirical censoring 

and survival curves, respectively, referred to earlier for project 

number 165-174. The censoring distribution used in configurations 

13 through 15 is superimposed on Figure 4.15, while the survival 

distributions used in configuration 13 are shown on Figure 4.16. 

Figure 4.17 shows both the Kaplan-Meier estimate of the censoring 

pattern for the relevant data in the 165-150 study, and the censoring 

distribution we chose for configurations 16 and 17. Figure 4.18 

displays empirical survival curves for part of the 165-150 data, 

and the piecewise exponential survival distributions used in simulation 

configuration 16. 
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Monte-Carlo Estimates of the Sizes of the Generalized 

Smirnov, Ka (a = 0,1,2,3,4), Gehan-Wlcoxon 

and Log-Rank One-Sided Test Procedures of 

Ho: Sl = S2 vs Hl: Sl < S2 (1000 simulations) 

1.0 

0.5 

I l-C(t) 

l-C(t) 

I 

I ( 
0:5 

I I 
1.0 1.5 time + 

FIGURE 4.1: CONFIGURATION 1 

Expected Percent Censored: 13.5% 

Sample Size: Ml = N2 = 20 
Nl 2 

=N = 50 

Level of Test: .Ol .05 .Ol .05 

Generalized Smirnov 

K0 
K1 
K2 

K3 

K4 

Gchan-Wilcoxon 

Log-Rank 

.012 .044 .OlO .039 

.OOl ,029 .002 .02S 

.003 .029 .007 ,039 

.004 ,035 .013 .042 

.006 .038 .Oll .046 

.006 .047 .012 .051 

.008 .042 .008 .047 

.006 .043 .Oll .046 
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TABLE 4.2 b..~: 

r  

1 

,  

Nonte-Carlo Estimates of the Sizes of the Generalized 

Smirnov, Ka (a = 0,1,2,3,4), Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 

Ho: s1 = s2 vs I$: Sl < S2 (1000 simulations) 

0.11- 
0 0.5 1.0 time + 1.5 time -+ 

FIGURE 4.2: CONFIGUPATION 2 

Expected Percent Censored: 25.4% 

Sample Size: 3 = N2 = 20 N1 
= N, = 50 

Level of Test: .Ol -05 .Ol .05 

Generalized Smirnov 

K0 

K1 
K2 

K3 

K4 

Gehan-Wilcoxon 

Log-Rank 

.014 .057 .012 ,051 

.ooo .020 .003 .036 

.003 .033 ,009 .040 

,004 ,037 .006 .051 

.004 ,042 .005 .047 

,003 ,042 .002 .040 

.007 .056 .Oll .054 

,007 .045 .Oll .050 
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TABLE 4.3 SIZE 

Monte-Carlo Estimates of the Sizes of the Generalized 

Smirnov, Ku (cz = 0,1,2,3,4), Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 

HO: s1 = s2 vs H1: Sl < S2 (1000 simulations) 

FIGURE 4.3: CONFIGURATION 3 

Expected Percent Censored: 36.8% 

Sample Size: Nl = N2 = 20 Nl = N2 = 50 

Level of Test: .Ol .05 .Ol .05 

Generalized Smirnov 

K0 

r  

K1 

K2 

K3 

K4 
Gehan-!!ilcoxon 

Log-Rank 

,006 .036 

.ooo .033 

. 000 .033 

.ooo .033 

.002 .033 

.002 .038 

.003 .058 

.006 .0613 

* 009 .040 

.003 .035 

.004 .0;5 

.004 .034 

.003 .035 

.004 ,033 

.004 ,033 

.006 .OhO 
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TABLE 4.4 SIZE 

Monte-Carlo Estimates of the Sizes of the Generalized 

Smirnov, Ku (a = 0,1,2,3,4), Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 

Ho : S1 = S2 vs Hl: Sl < S2 (1000 simulations) 

: 1.0 _ 

3 s 

z 

\ 

-2 ,y- 

!k k l-C(t) 

rl 

2 

E 

r: 0.5 
2 z 

- r 

,' 8 
0.1 

;_( 0 0.5 1. time + d!" . LI> time + 

FIGURE 4.4: CONFIGURATION 4 

Expected Percent Censored: 47.4% 

Sample SIX: N1 = N2 = 20 N1 = N2 = 50 

Level of Test: .Ol .05 .Ol .05 

Generalized Smirnov ,007 .038 .oos .041 

K0 .OOl .023 .007 .035 

r K1 .002 .034 .OlO .043 

K2 .003 .035 .008 .045 

K3 .005 ,030 .006 .045 

K4 .005 .033 -006 .036 

Gehan-Wilcoxon .004 ,048 . 011 ,050 

Log-Razk .004 .049 .015 .054 
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Monte-Carlo Estimates of the Sizes of the Generalized 

Smirnov, Ka (a = 0,1,2,3,4), Gehan-Wilcoxon 
and Log-Rank One-Sided Test Procedures of 

Ho: SI = S2 vs Hl: Sl < S2 (1000 simulations) 

1 / , 1 O.1 lrct) A I 0 0.5 1.0 time + 015 1.0 1.5 time * 

FIGURE 4.5: CONFIGURATION 5 

Expected Percent Censored: 60.7% 

Sample Size: Nl = N2 = 20 3 = N2 = 50 

Level of Test: .Ol .05 .Ol .05 

Generalized Smirnov 

K0 

Kl 

K2 

K3 

K4 
Gehan-Wilcoxon 

Log-Rank 

.Oll .045 .007 .039 

.004 .036 .005 .042 

.00/r .042 .006 .040 

.005 .043 .006 .f~3G 

.005 .044 .006 .038 

.005 .042 ,005 .038 

,010 ,061 .012 .046 

.009 .064 ,011 .049 
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TABLE 4.6 SIZE 

Monte-Carlo Estimates of the Sizes of the Generalized 

Smirnov, Ku (a = 0,1,2,3,4), Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 
Ho: Sl = S2 vs Hl: Sl < S2 (1000 simulations) 

0.1 
b 0.'5 

, 
1.0 time + 0.5 1.0 1.5 time + 

FIGURE 4.6: CONFIGURATION 6 . 

Expected Percent Censored: 67.9% 

Sampie Size: El = N2 = 20 N1 = N2 = 50 

Level of Test: .Ol .05 .Ol .05 

Generalized Smirnov .003 .033 .006 .034 

K0 .OOl ,030 .005 ,030 

* Kl .003 .031 .007 .032 

K2 .003 .033 .007 .033 
* 

K3 .003 .035 .009 ,034 

K4 ,003 ,033 .009 .035 

Gehan-Wilcoxon ,010 .052 .OOY .038 

Log-Rank .OlO .046 .007 .036 
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'TAJ'L,: 4. I .-'GWER 

I ” 

Monte-Carlo Estimates of the Power of the Generalized 

Smirnov, Ku (a = 0,1,2,3,4) Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 

Ho: s1 = s2 vs H1: Sl < S2 (500 simulations) 

time + 

FIGURE 4.7: CONFIGURATION 7 ' 

0.5 1.0 1.5 tine + 

Sample Size: N1 = N2 = 20 

Level of Test: .Ol .05 

Generalized Smirnov .236 .470 

K0 .068 .392 

K1 .156 -446 

K2 .166 .426 

K3 ,140 .372 

K4 .llO .354 

N1 = N2 = 50 

.Ol .05 

.566 .798 

.410 ,752 

.570 .832 

.542 .784 

.466 -700 

.396 .618 

Gehan-Wilcoxon .228 .478 .568 .820 

Log-Rank .276 .522 .640 -872 
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TABLE 4.8 POWER 

Monte-Carlo Estimates of the Power of the Generalized 

Smirnov, Ka (a = 0,1,2,3,4) Gehan-Wilcoxon 
and Log-Rank One-Sided Test Procedures of 

HO: Sl = S2 vs Hl: Sl < S2 (500 simuPations) 

0.1 I 
0 0'. 25 0.5 time + 

I 
1.0 1.5 time + 

FIGL'KE 4.8: CO:JFIGUPXTIO:: 8 

Sample Size: N1 = N2 = 20 N1 = N2 = 50 

Level of Test: .Ol .05 .Ol .05 

Generalized Smirnov .252 .426 .638 ,818 

K0 .046 .450 .578 ,932 

I K1 .092 ,304 .414 .710 

K2 .034 .154 .136 .280 

K3 .012 .068 ,024 ,090 

K4 .OlO .034 .002 .014 

Gehan-Wilcoxon .034 ,130 .064 .188 

Log-Rank .140 .358 .418 .692 
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0.1 

Monte-Carlo Estimates of the Power of the Generalized 

Smirnov, Ka (a = 0,1,2,3,4), Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 
Ho: Sl = S2 vs Hl: Sl < S2 (500 simulations) 

0.4 

time 

FIGURE 4 

+ 

.9: 

1.0 1.5 time + 

CONFIGURATION 9 ' 

Sample Size: N1 = N2 = 20 

Level of Test .Ol .05 

Generalized Smirnov .310 .488 

K0 .050 .552 

K1 .074 .364 

K2 .034 .196 

K3 .016 .lOO 

K4 .OlO .054 

Gehan-Wilcoxon .023 .148 

Log-Rank .150 .416 

N1 = N2 = 50 

.Ol .05 

,714 .854 

.783 ,948 

.430 .724 

.190 .348 

.070 .192 

.024 .OqS 

.080 .254 

.406 .688 
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TABLE 4.10 POWER 

lfonte-Carlo Estimates of the Power of the Generalized 

, Sd.ZXOV, K' (a = 0,1,2,3,4), Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 

Ho: Sl = S2 vs Hl: Sl < S2 (500 simulations) 

x=2 J x=.75 .#y -\ \ 
\F 

A=3 

\ 

k 
\ 

x 3 a 
t 

,A=1 
x = .75‘\! 

J--l-d- 
0 .05 1.0 time + 

I 

1.0 1.5 time * 

FIGURE 4.10: CONFIGURATIO:? 10 * 

Sample Size: 

Level of Test: 

Generalized Smirnov 

K0 

K1 

K2 

K3 

K4 

Gehan-Wilcoxon 

Log-Rank 

% = N2 = 20 N1 
= N2 = 50 

.Ol .05 .Ol .05 

,198 ,400 .604 .804 

.OlO .072 .060 .304 

.052 .280 .346 .674 

,084 ,294 .386 .666 

.080 .250 0302 ,530 

.068 .194 .202 .432 

,072 ,274 .246 .504 

.054 .178 .132 .330 
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TABLE 4.11 POWER 

Nonte-Carlo Estimates of the Power of the Generalized 

Smirnov, Ka (a = 0,1,2,3,4), Cehan-Wilcoxon 
and Log-Rank One-Sided Test Procedures of 

Ho: Sl = S2 vs H1: Sl < S2 (500 simulations) 

0 0.25 0.5 time + 

0.5 i 
L/Y ’ 

0.5 1.0 1.5 time + 

FIGCRE 4.11: CONFIGURATION 11 ' 

Sample Size: N1 = N2 = 20 

Level of Test: .Ol .05 

Generalized Smirnov .144 .36S 

K0 .ooo .052 

K1 .032 .234 

K2 ,108 .402 

K3 .162 .49G 

K4 .186 .534 

Gehan-Wilcoxon .102 .322 

Log-Pank .042 .162 

N1 = N2 = 50 

.Ol .05 

.580 .822 

.012 .120 

.27b 0646 

.58l-l .a42 

.7no .a94 

.732 .a96 

.262 .522 

.06A .214 
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TABLE 4.12 POWER 

Monte-Carlo Estimates of the Power of the Generalized 

Smirnov, Ku (c( = 0:1,2,3,4), Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 

Ho: S1 = S2 vs Hl: Sl < S2 (500 simulations) 

.(.5tY51 x 
: 1.0 
.-I 

; 

exp[-(Zt)‘] I! 
0.5 

2 

I I \ I 
0.5 1.0 time -f 

T7 l-C(t) 
L ’ 

/ ? 
0.5 1.0 1.5 time -c 

FIGTXE 4.12: CONFIGURATION 12 , 

Sample Size: 

- . 
N1 = N2 = 20 N1 = N2 = 50 

Level of Test: .Ol .05 .Ol .05 

Generalized Smlrnov 

K0 

Kl 

K2 

K3 

K4 

Gehan-Wilcoxon 

Log-Rank 

.680 .840 

,264 .a58 

.258 .642 

,110 .362 

.070 .202 

.044 .llO 

.068 ,188 

.352 ,656 

.992 .998 

.990 1.000 

.914 .980 

-512 .760 

.226 .4Ob 

.064 .168 

,154 .366 

.882 .974 
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0.6 

. I 

s(t) FIGURE 4.13 

I 
I 

0.2 
I 

I 
I 

I I I I I I I I I I I 1 I I I I , I t I I 
0.2 0.4 0.6 0.8 1.0 time * 0.2 0.4 0.6 0.8 1.0 time -: 
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INFORMATION FOR CONFIGURATIONS 13-15 

Values of t: (ta,tb) x1 x2 Sl(tb) S2(tb) 
---. 

CONFIGURATION 13 

(0.00, 0.36) .03 .03 .99 .99 

(0.36, 0.72) .35 .18 .87 -93 

(0.72, 1.08) .74 .44 .67 .79 

(1.08, 1.11) 4.70 8.70 .58 .61 

(0.00, 0.36) -03 .03 .99 .99 

(0.36, 0.72) .35 .18 .37 .93 

(0.72, 1.08) .91 .30 .63 083 

(1.08, 1.11) 2.67 12.10 .58 .58 

(0.00, 0.36) 

(0.36, 0.72) 

(0.72, 1.08) 

I (1.08, 1.11) 

CONFIGURATION 14 

CONFIGURATION 15 

.03 .03 .99 .99 

.35 .18 .87 .93 

1.04 .17 .60 .87 

1.04 13.70 .58 .58 
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Monte-Carlo Estimates of the Power ot the Generalized 

Smirnov, Ku (a = 0,1,2,3,4), Gehan-Vilcoxon 

and Log-Rank One-Sided Test Procedures of 

Ho: S1 = S2 vs Hl: Sl < S2 (500 simulations) 

TABLE 4.13 (FOR CONFIGURATION 13) 

Sample Size: Nl = N2 = 50 Nl = N2 = 100 

Level of Test: .Ol .05 .Ol .05 

Generalized Smirnov .060 ,200 .152 .400 

K0 .022 .144 .034 .302 

I? .044 .180 .120 .394 

K2 .056 .208 .174 .442 

K3 .068 .234 .208 .478 

K4 .072 .238 .218 .478 

Gehan-Wilcoxon .064 .226 .160 . .39a 

Log-Rank .048 .154 .074 .232 

TARLE 4.14 (F0'7 CONFIGUFLlTION 14) 

Generalized Smlrnov .154 .458 .494 .775 

K0 .054 .31L ,274 .608 

K1 .112 ,412 .408 .698 
* 

K2 ,144 .446 .484 .776 

. K3 .168 .466 .504 .772 

K4 .172 .456 .498 .766 

Gehan-Wilcoxon .096 .316 .23L ,524 

Log-Rank .044 .166 .094 .258 
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Smirnov, Ku (a = 0,1,2,3,4), Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 

HO: SI = S2 vs H1: S,, < S2 (500 simulations) 

TABLE 4.15 

Sample Size: N1 = N2 = 50 Nl = N2 = 100 

Level of Test: .Ol .05 .Ol .05 

Generalized Smirnov 

K0 

K1 

K2 

K3 

K4 

Gehan-Wilcoxon 

Log-Rank 

.362 .630 .810 .934 

.166 .480 ,618 ,878 

.262 .576 .?34 .916 

.336 .608 .?74 .920 

.362 .622 ,774 .920 

.362 .610 .758 .910 

,180 .406 .408 .658 

.068 .192 ,140 .344 
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INFORMATION FOR CONFIGURATION 16-17 

Values of t: (ta,tb) 

CONFIGURATION 16 

(0.00, 0.35) 

(0.35, 0.65) 

(0.65, 0.91) 

(0.91, 1.03) 

(1.03, 1.05) 

(0.00, 0.35) 

(0.35, 0.65) 

(0.65, 0.91) 

(0.91, 1.03) 

(1.03, 1.05) 

.oo 

.20 

.49 

.oo 

9.10 

.oo 

.20 

.63 

.oo 

7.30 

.oo 1.00 1.00 

.oo .94 1.00 

.23 .83 .94 

1.47 .83 .79 

7.50 .69 .68 

CONFIGURATION 17 

.oo 1.00 1.00 

.05 .94 .99 

.05 .80 .97 

2.06 .80 .76 

5.60 69 .68 

I ” 

I - 
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Monte-Carlo Estimates of the Power of the Generalized 
Smirnov, Ku (cr = 0,1,2,3,4), Gehan-Wilcoxon 

and Log-Rank One-Sided Test Procedures of 

Ho: Sl = s2 vs Al: Sl < S2 (500 simulations) 

TABLE 4.16 (FOR COKFIGURATION 16) 

Sample Size: N1 = N2 = 50 N1 = N2 = 100 

Level of Test: .Ol .OS .Ol .05 

Generalized Smirnov 

K0 

Kl 

K2 

K3 

K4 

Gehan-Wilcoxon 

Log-Rank 

.020 .144 

.008 .080 

.016 ,126 

.024 ,182 

.056 .236 

,088 .302 

.040 .170 

.020 ,090 

.076 

,014 

.046 

.108 

.166 

.244 

.044 

.022 

.322 

.142 

.262 

.402 

.524 

.620 

.194 

.072 

Generalized Smirnov 

K0 

Kl 

K2 

K3 

K4 

Gehan-Wilcoxon 

Log-Rank 

TABLE 4.17 (FOR CCFFIGURATION 17) 

.060 .324 ..460 .812 

.012 .132 .146 .55? 

.040 .254 ,298 .734 

.074 .364 .482 .830 

.118 .450 .596 .886 

.166 .526 .688 .916 

.046 .174 .112 .332 

.016 .074 .032 .122 
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FIGURE 4.15 
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CENSORING DISTRIBUTIOKS IN TIME-TO-RE-TUMOR 
DATA FOR PROJECT 165-174 
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TIXZ-TO-E-TUMOR IN PROJECT 165-174 

- Pooled female control groups (higher curve) 
- Female low dose red dye # 40 group 

--- Survival curves in CONFIGLXATION 13 
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CENSORING DISTRIBUTIONS IN TIME-TO-RE-TLWOR 
DATA FOR PROJECT 165-150 

A Female control group 

D Female low dose red dye # 40 group 
a Female middle dose red dye // 40 group 

-- - Censoring curve for CONFIGlJMTIONS 16, 17 
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