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SURVDIFF provides non-parametric statistics to compare survival curves in 

independent samples. Linear rank test statistics include the Gehan-Wilcoxon 

(GW)(l) and the tipy class of statistics where pz, ~20. Special cases are the 

Barrington-Fleming C? statistics (2) (~20, y=O>, the log-rank test (3) (LR) (p=O, 

y=O) and Peto-Peto-Wilcoxon (4) (PPW) (p=l, y=O). These linear rank tests have 

been developed for rL2 sample situations, with corresponding one-sample 

goodness-of-fit statistics defined, as well. For one-sample tests, the C?" is 

available for ~20, y=O,1,2. For r=2 sample situations, versions of the 8" 

and GW test statistics are also available for testing departures from a 

proportional hazards model where the prespecified proportionality constant need 

not be unity. 

In testing for the equality of two survival curves, a generalized 

Smirnovc5) (GS) test statistic and a class of Y P (6,7) statistics, pip, which 

are non-linear supremum-type rank statistics, have been included. 

Users should view SURVDIFF as a replacement for the SURVTEST procedure. 

It is the natural complement to the SURVFIT procedure which estimates survival 

curves. 
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Washington, Seattle, WA 98195. 
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A. Statistical Development 

Al. Notation. Assume the following data are available on the k th 

individual, k-l, . . . . N, where N indicates the total nunber of individuals over 

all samples. Let the k th individual's observation time be denoted by Xk and 

let Ak be an event indicator denoting whether the observation time is an event- 

time (Ak=l) or a censorship time (A k=O>. Also let Zk be the sample 

indicator, so Zks{O,l,...,r-l}. betting i index the sample, then the number of 

individuals in the ith sample is given by 

Ni E ! I{ Zk=i} , 
k=l 

where I{A} refers to the indicator function for the event A. Note that 

r-l 
N=E N. 

i=o i 

N k If we set Yk(x)=I{Xk>x}, then Y,(x) = C Y (x) I{Zk=i} represents the size 
k=l 

of the risk set at time x in sample i; i.e., the number of individuals in 

sample i who are observed for at least x days. Define Nk(x)=I{XkLx, Ak=l}, 

N k 
so N,(x)= C N (x) I{Zk=i} represents the number of observed deaths in the i th 

k=l 

sample at or before x-days. 

The notation just presented is standard among authors, such as Gill (8) , 

who have applied the theory of stochastic processes to survival analysis. It 

also will be useful to give the alternative notation for risk set sizes and 
- 

numbers of deaths that was used by Mantel (3) in the development of the log- 

e rank test. 

In what follows, the subscript k will be used to index distinct, ordered, 

observed death (or event) times over all samples, with k=l,Z,...,d*. Note 

that d* will be the total number of observed deaths only if there are no tied 
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observed death times. Denote the set of ordered, distinct death times by {Tl, 

rl 

T2' . . . . Td*} vhere Tl<T2<...CTd*. Then, dik = ai and dk = I dNi(Tk) 
i=O 

refer to the number of deaths occurring at Tk in the i th sample and over all 

samples, respectively. The number of individuals in the risk set at death . 

time Tk for the i th sample and over all samples are nik = Yi(Tk) and 

r-l 

"k = C Y (T >, respectively. 
i-0 i k 

Since all statistics to be defined are nonparametric, computations will be 

performed only over the interval in which risk set sizes are positive in at 

least two of the r samples. Thus, the last observed death time contributing 

information to the statistics is T 
d' 

where 

d E max[k: nk > max{nik, i=O,l,...,r-l}]. 

Clearly, did*. 

AZ. Model. Denote the true survival distribution for the i 
th 

sample by 

Si(t), which is simply the probability that an individual in sample i will 

survive from time 0 to time t. If we denote the cumulative hazard function in 

sample i byAi(t), it follows that S,(t) = exp{-Ai(t Individuals in the ith 

sample then have hazard function 

&(t) I x1(t) . 

To help interpret the meaning of the hazard function, consider a small AT. 

Then )ri(.r)Ar is approximately the probability of death occurring in the 

interval T to T+A?, given survival to T. 

bet C,(t) denote the probability an individual in sample i is not censored 

before time t. Assuming statistical independence between the causes of death 

and censorship, it follows that the distribution of observation times in the 

th 
i sample is given by xi(t) E Si(t)Ci(t). 
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Suppose ri2. With the exception of one important special case, all test 

procedures to be discussed were developed to test the hypothesis that all r 

samples have equivalent survival distributions; that is, 

Ho: Si(t> = S(t), i=O,...,r-1, (1) 

where S(t) is unspecified. The exception to this is that the two-sample linear 
-_ 

rank tests to be discussed can be employed more generally to test the 

hypothesis 

Hi: A,(t) = A0(t)e80 (2) 

for some fixed So. Of course, Hi reduces to Ho when So=O. 

A3. Two-sample linear rank tests. As background, these test statistics 

are called rank tests because they depend on time only to the extent necessary 

to rank deaths and censored observations. A rank test statistic is invariant 

under any monotone transformation of the data because such a transformation 

does not alter the ranks. They are called linear because such statistics can 

be written as linear functions of the ranks. 

A classic two-sample linear rank statistic to test Ho in censored survival 

data is the log-rank, proposed by Mantel (3). Conditioning on risk set sizes, 

nok and n lk, and on the number of events, dk, occurring at Tk, Mantel proposed 

forming the difference between the observed and conditionally expected number 

of events in sample 1 at Tk. The log-rank statistic, as stated in (3), is then 

proportional to the sum of these differences when the sum is taken over event 

times: 

log-rank 0: C {d 
%, lk - ( noglk] dkl (3) 

This statistic can be generalized to provide greater sensitivity to 

survival differences occurring over certain periods by employing a weight 

function Q(Tk). One further generalization to test the more general 
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hypothesis Ei: A,(t) = lo(t)e'O yields 

Z(N) = d ?k 
0 eo 

- 1 Q(Tk){ dlk - 
k=l 

"Ok+"lkeBo 
dkl (4) 

Remembering that Zks{O,l} in the two sample setting, equivalent 

formulations for ZCN), using Lebesgue-Stieltjes integrals, are given by: 

= i Q(x) { 
Ye(X) Yl(x)eBO 

I I 
qx) 

YO(x)+Y1(x)eBO Yl(x)eBO 

dNoW 

-yo(xr (6) 

= $ Q(x){ 
YO(x)Y1(x)eBO 
Yo(x)+Yl(x)e~o 14 e-80++ir,(x)~ 

where (7) follows from (6) since the cumulative hazard estimator is 

x dNi(u) 
ii(X) E j 

0 Y,(u> - 

(7) 

We can see from (7) that, when So '0, these two-sample linear rank statistics 

are simply a sum (integral) of weighted differences in hazard functions. 

The variance, V, of Z 0) can be proposed heuristically by using weighted 

Bernoulli arguments in untied data , or in tied data with ~,=0, by hyper- 

geometric distribution arguments of Mantel (3) . Employing the theory of 

stochastic processes, Gill (8) has verified that the statistic 

"lke 
60 

Z(N) 
: Q(Tk) { dlk-( 

k=l n, 
nOk+"lke80 

) dkj IC’ 

v1/2= 
nOknlkeBO(nOk+nlkeBOdk) 

dkl 
l/2 

(n0k+nlke80)2 (nOk+nlke80-l) 

(8) 
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indeed has a standard normal distribution vhen NW, as long as Q satisfies some 

mild regularity conditions. To be precise, this result holds in untied data 

for any S, and holds when g,,:O whether or not ties exist. However, when 6, is 

a fixed non-zero constant and ties exist in the data, one must be more 

cautious. Formally, to study properties of statistics in tied data situations, 

one considers discrete time models. To amplify, many discrete time models 

exist which, as the discretization becomes finer, reduce to the proportional 

hazards model, A,(t)=A,(t)e6. The statistics under these models in general 

will differ unless one is testing the hypothesis of equality; i.e., Ho: B~=O. 

For example, one of these discrete time models, the so called "log odds" model 

of Cox(g) , gives rise to a partial likelihood (equation 4.14 of Kalbfleisch and 

Prentice(lO) ) and a score statistic which agrees with our equation 8 (with 

Q(t):l> only when bOzO. Although differences between various discrete time 

statistics exist when testing a non-zero S,, they are minor unless data are 

heavily tied. Thus, we suggest the use of the statistic in equation (8) due to 

its simplicity, ease of computation, and intuitive appeal. Still, one should 

be cautious if 6,#0 and data are heavily tied. 

Observe in equation (8) that the weighted observed number of deaths in 

sample 1 is given by 
d 
I: Q(Tk) dlk 

k=l 

while the weighted expected number of deaths in that sample 1 is 

d d 
nlk nlk 

eBO eBO 
kz,l QcTk) ( kz,l QcTk) ( fi ) dk B ) dk 

"Ok+?ke ' "Ok+?ke ' 

As mentioned earlier, the weight function Q enables one to obtain As mentioned earlier, the weight function Q enables one to obtain 

particular sensitivity to survival differences occurring at specific points in 

time. The following table indicates those weight functions which we are making 

available and the name of the corresponding test statistic. i is simply the 

left-continuous Kaplan-Meier (12) survival estimator in the pooled sample. 
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Q(x)(weight function) Test Statistic 

Yo(x)+Y1 (x> 

I~(x>lP Il-$x)lY 

1 

ax> 

[ ?h.>]” 

Gehan-Wilcoxon (1) 

GP SY class 

log-rankC3) 

(Gp 'y , @r Y=o) 

Peto-Pet0 Wilcoxon (4) 

(Gp " , P’l, r=o> 

Harrington-Fleming Go (2) 

(Gp ” , r=O) 

Briefly, relative to the log rank test, the Gehan-Wilcoxon and Peto-Peto 

Wilcoxon provide greater sensitivity to survival differences occurring earlier 

in time since (Yo(x)+Y1(x)) and S(x) are decreasing weight functions. The 

Harrington-Fleming Gp class includes the lorrank (p-0) and Peto-Peto Wilcoxon 

(p=l) as special cases and provides greater sensitivity to early occurring 

differences the larger one chooses p. For the situation in which S,-0, 

Harrington and Fleming(') have found the type of departures from Ho that each 

of the Go test produces is fully efficient in detecting. Obviously, the Go" 

family provides considerable versatility to the user. Sensitivity to early 

occurring differences is obtained by taking p>O, y-0, to middle differences by 

taking p*l*y, and to late occurring differences by taking ~"0, y>O. 

A4. r-sample linear rank tests of equality of survival (e%l) 

Recall in two samples from equation (81, with e'O3, 
+) 
- - N(O,l) with 

"l/2 

formulation 

d 
c QcTk) Idlk 

k=l 
-,"lk, dk} "k 

{ k;lQ2(Tk) 
"Ok'lk (nk-dk) 

dkl 
l/2 

(nk12 (nk-1) 
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This statistic can be generalized to r-samples as ,Z (N)' d 00 ,V ,Z 2 
_ x r-l 

where 

and 

where 

6ie 
=l if i=L and 0 if ifL. 

d 
Tbe weighted, observed number of deaths in the i th 

sample is Z Q(Tk) dik , 
k=l 

with corresponding weighted, expected number of deaths 

i Q(T ) 
"ik for i=O,l,... r-l. 

k=l k qdk 

For 

Q(x) = [ %d]p [l-b>]' (9) 

r-l 
we have the Gpsy class , while for Q(x) = C Y (x), we have the Breslow-Gehan- 

i=o i 

Wilcoxon test statistic. 

A5. One-sample linear rank, goodness-of-fit tests (eSO=l). The class of 

one-sample goodness-of-fit tests (2) which we present can be obtained from 

equation (6), with fio=O and Q(x) as defined in (9), by letting N1+% The 

hypothesis to be tested is that the true underlying survival function, S, is 

equal to some specified So. In the one sample problem, note that N!No. 

The statistic's numerator can be shown to be 

- F bocxk,}p {l-So($)} *k . 
k=l 
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Observe that the statistic continues to be the difference between the sum of 

weighted expected and weighted observed numbers of deaths. 

It can be shown that N -l/2 +I 
P >Y 

- N(O,u*) as N+= 

with u* = 7 {So(x)}2p {l-So(x)}2y v,(x)&,,(x). The variance u* is 

0 

consistently estimated by N'% = N-1 
N Xk 

{so~x)]2p{l-so(x)]zy dho(x). 

Z(N) 
Then -- N(O,l) . 

v1/2 

For example, with p>O, y-0, we have 

Z(N) i 

%=,=l 

o-l[l-{So(Xk)}p]- : Ak{So(Xk))P 
k=l 

N . 

{ I: (2P)-+l-{s (-kpl}1’2 
k=l 0- 

By setting p=O, y-0, we obtain the one-sample version of the log-rank test, 

which is given by 

N 
#J) i [-En SoCXk)] - c Ak 

0,o = k=l k=l 
v1/2 

{ %, [-in So Wk)]} 1'2 

. 

Note that to calculate these one-sample statistics, one need only specify 

(Xk, Ak> and So(Xk) for the kth individual; k=l, . . . . N. As stated above, the 

one-sample Gosy test statistics are only available for ~10, y=O,1,2. 

A6. Two-sample Non-linear Rank Tests. Through this SAS procedure, one 

can compute two-sample supremum-type non-linear rank tests of equality of 

survival distributions. These tests are based upon the 'Kappa Rho" (K’) class 

of statisticsC6) and the generalized SmirnovC5) statistic. 
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To provide motivation for the KP class of statistics note that in 

biological problems and in many other areas of application, the proportional 

hazards model frequently is thought to adequately represent the relationship of 

a covariate to a continuous endpoint. As a result, the Cox partial likelihood 

score statistic and more specifically the logrank statistic, Go, provide the i 

standard against which other censored data rank statistics must be compared. 

The Renyi-type statistic K o is essentially a supremum version of the logrank 

statistic. KO provides one natural way to obtain a test procedure which nearly 

maintains the sensitivity of Go against proportional hazards alternatives, yet 

which is more powerful than 8 when the hazard ratio is clearly non-constant. 

Simulation studies do confirm the high power of i" against proportional hazards 

alternatives and confirm that KO is more versatile than Go across several 

distinctly different configurations in uncensored or lightly censored data (6) . 

Similarly, it is apparent that KP provides a supremum version of the linear 

rank statistic (Z?, with K’ being more versatile in uncensored or lightly 

censured data. 

To fornnrlate the I? statistics, choose a value of ~20. Let ii(t) and 

l?,(t) denote estimates of Si(t> and Ci(t). Then 

Kp = (;2)-1'2 f;; KP(t) 

where 

i 

K’(t) = ; o 
dNo (x> 

* ~{No(x)Nl(x)>O}{ y. (x> - 
dN1 (xl 

Y1 (x> 
} 

and where 

2 = $ + { [ so(x)]2p+1 + [ 5, b)] 2p+1} IrNo (x)f$ (x)>Ol 
dNo (x)+$ (x> 
{ No (x)+N1 (x) } . 
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i 

Note that for a-p+l, K’ is identical to the Ka statistic of Fleming and 

HarringtonC7) except for the formulation of (r*. K’ is superior to f in the 

sense that Kp has appropriate size even in small and moderate sample size 

applications. 

Another supremum-type test statistic is the generalized Smirnov (GS) test. 

It is formulated as follows: 

GS = SUP YN N 
t 0' 1(t) 

where YN 
t NO~O(~) N1+' 1,2 

N (t) = $So(t+)+Sl(t+)} i {, 
,~,(d+NIC1(d 1 

0' 1 

* IfYo(x) ylwoj { 
dNl(d aJo (d 
y tx> - Y. (x> I 9 

1 

where Si(t+) 5 tt: S,(u) . 

The GS statistic is a versatile test statistic with sensitivity to any 

survival differences which are large at some point in time, independent of the 

type of differences existing elsewhere. The corresponding test produced is 

especially sensitive to departures from Ho in which the two survival 

distributions exhibit a substantial difference in their middle range, but 

possibly have this difference disappear when hazard functions cross. 
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B. SURVDIFF Statement Specification 

PROC SURVDIFF options; 

Options: 

DATA-data set name - - 
Specifies the name of the data set to be used. If omitted, it uses the 

last one created. 

Gw 

Indicates the Cehan-Wilcoxon statistic. This option is appropriate for 

l-, 2- and r>2-sample problems. 

GS 

Requests generalized Smirnov test. Option appropriate for two-sample 

problems only. 

SAMPLES=r 

Specifies the number of samples. Use 1, 2, and R for 1, 2, and r>3 - 
samples, respectively. If omitted, data till be scanned for number of 

samples. If used, it speeds up processing. There are tm methods of 

specifying the number of samples: 

i) If the "SAMPLES=r" option is not used, the procedure scans the data 

set or by-group to determine the number of levels of the CLASS 

variable and performs only those requested tests appropriate for 

the number of samples. 

ii) If the "SAMPLES=r" option is used, the procedure requires that the 

data set or each by-group meet the following criteria: 

a. If SAMPLES=1 is specified, SOFT= must be coded and the CLASS 

statement omitted. 

b. If SAMPLES=2 is specified, tests are performed only on the data 

set or by-groups which have 2 levels of the variable in the CLASS 

statement. 

c. If SAMPLES=R is specified, tests are performed only on the data 

set or by-groups which have 13 levels of the variable in the 

CLASS statement. 
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VARNAMES [keyword+=key_word_variable_name+]; 

i 

Keyword 

TIME-variable_name_of_observation_time 
This numeric variable contain5 the time in days (actually any time units 
are permissible) from time 0 to the event of interest or censoring. 
If not specified, the variable, TIME, appropriately defined is assumed to 
exist on the data set. 

EVENT=variable name of event indicator -- - 
EVENT indicates whether the observation time is an event (death) time or 
time of censorship where l=censor, 2=event. If not specified, the 
variable EVENT appropriately defined is assumed to exist on the data 
set. 

SOF'l%variable~name~of~hypothesixed~survival 
SOFT indicates the expected survival probability, S,(t), used in the one- 
sample, linear rank tests. It is specific to the individual and to the 
individual's observation time. SOFT is required and only appropriate for 
one-sample problems. 

CLASS class-variable-name: 
The class variable name defines the groups to be compared. It may be a 
numeric or character variable. If character, the maximum length is 
sixteen characters. * Omit he CLASS statement for pnesam le problems. 

d 
a 

*-c fifuGcf<\ b+-. dck c-fiikc --c&h- /d, 5 @#&Ad& 
(&$$) * (h&? 

cc., ZdZ- 
GRHOG 1' ({P$) * ( IQ} )  ’ l -  

-~ ~&7~rd7[q.iw p;” I  

The notation {pi) * {yi) refers to a set of p's and r's to be used. 
The limit on the number of py combinations is 100. These options are 
appropriate for l-, 2-, and r >3 sample problems. 

Examples: GRHOGAMMA 0*0 l*O; would result in a log-rank and Peto-Peto 
Wilcoxon test, respectively, or their analogs for l-, 2-, and r->3 sample 
situations. 

Coding GRHOGAMMA (0 I) * (1 2 3); is equivalent to coding GRHOGAMMA O*l 
0*2 0*3 1*1 1*2 1*3; At least one p (03532767) and y (O<y<32767) -- 
combination must be specified with the GRHOGAMMA statement. 

BETA B1 82 l l l & ;  or BETA S1 TO B2 BY increment; 
BETA indicates the b term for testing departures from a proportional 
hazards model with hazard ratio exp(B), as described above. The default 
is 610, which corresponds to testing the equality of the hazard and thus 
equality of survival. Non-zero values for BETA are appropriate for two- 
sample problems only. A maximum of 100 BETA's may be specified where 
-32767cBETAi32767. The increment is any positive number such that - 
O<increment<32767. 
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KAPPARHO p1 p2 . . . pk; 

KAPPARHO specifies the pi values to be used in the KAPPABHO statistic. 

The maximum number of rho values that can be specified is 100, where 

-1(p&32767. This option is appropriate for the two-sample situation 

only. 

BY by-variable(s); 

As with other procedures, analysis will be done separately for each level 

of the by-variable provided the data are sorted accordingly. 

C. Testing One-Sided Hypotheses 

Only for the 2-sample situation can a one-sided test be computed. 

For KP and generalized Smirnov statistics, one-sided p-values are given 

where, under the alternative hypothesis, the second sample in sort order of the 

class variable is the one assumed to have longer (better) survival. 

For the GpyY class of statistics, specification of the level of the class 

variable must be done in conjunction with specification of 6. Let l,(t) be the 

hazard for sample 1 (first in sort order of the class variable) and I,(t) the 

hazard for sample 2. If A,(t)<I,(t) the survival in sample 2 is longer 

(better) than sample 1; i.e. smaller hazard implies better survival. The 

formulation in this procedure is I,(t)=1,(t)eg. Thus, if 6 is negative, 

eS<l and it follows that the second sample in sort order of the class 

variable is hypothesized to have longer survival than the first sample in sort 

order. For 6 positive, the first sample in sort order is hypothesized to have 

longer survival than the second. To be consistent with the supremum 

statistics, when setting S#O, it is necessary to specify the appropriate 

negative S and define the class variable so that the second in sort order has 

the longer hypothesized survival. A note appears on the output to aid in the 

interpretation for one-sided tests. 
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For all the linear rank statistics, only two-tail P-values are printed, 

but one-tail P-values can be easily calculated. Suppose, for example, S#O and 

the alternative of interest is in the direction of B=O. If in the sample with 

hypothesized longer survival, the sum of the weighted observed events is 

greater than the sum of the weighted expected, then the one-tail P-value is 

one-half of the two-tail P-value. If, in the sample with hypothesized longer 

SuNival, this sum of weighted observed events is less than the sum of the 

weighted expected, then the one-tail P-value is 1-(.5*two-tail P-value). 

As already mentioned, one-tail P-values are printed for the trp and the 

generalized Smirnov statistics. Note that for the supremum statistics, the 

one-sided P-value is not simply l/2 of the two-sided P-value. 

D. General Comments 

There are no default test statistics. Desired test statistics must be 

specified. 

Only one of each of the statements is permitted. 

Two-sided P-values are always printed. For the generalized Smirnov 

statistic, two-tail P-values above 0.80 are difficult to compute precisely (see -- 

ref. 5) and thus are denoted ">0.80". 

Label and format capabilities are available only for the CLASS variable. 

Since the availability of test statistics and options is specific to the 

number of samples (groups) being compared, we prepared the following table. 
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Test Statistics Available 

No. of 
Samples 

(r) 

1 

Xf3=0) 

2(8#0) 

)3(8=0) 

I 
No. of Samples 

(r) 
. 
I 

2 (BETA=O) 

2 (BETA*O) 

23 (BETA=O) 

GP ,Y 

(GRHOGAMMA) 

Yes (PLO, y=O,1,2) 

Yes (~>a, r>O> 

Yes (p)o, Y>o> 

Yes (PLO, Y>o> 

Gehan- 
Wilcoxon 

(GW) 

Yes 

Yes 

Yes 

Yes 

KP 
(KAPPARHO) 

No 

Yes 

No 

No 

Generalized 
Smirnov 
(GS) 

No 

Yes 

No 

No 

Statement and Option Specifications+ 

PROC options CLASS VARNAKES stmt GRHOGAMMA 
GW GS SAMPLES= DATA= stmt EVENT= TIME= SOFT= stmt 

NA NA omit, 1 OPT NA OPT* OPT* REQ WQ 

OPT OPT omit, 2 OPT REQ OPT* OPT* NA OPT 

OPT NA omit, 2 OPT REQ OPT* OPT* NA OPT 

OPT NA omit, R OPT REQ OPT* OPF NA OPT 

(defaul 

+ NA not applicable or appropriate. If specified an error vi11 result and processing 
will stop. 

OPT optional. Note that at least one test statistic must be specified. 

REQ required. 

* If not specified, appropriately defined variables with variable names EVENT and TIME 
respectively are assumed to exist on the data set. 

. 
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E. Example 

(13) The example presented below Is taken from the study of Lininger et. al. 

(14) and is used as an example by Fleming et. al. to sequentially test the 

comparability of survival in the two regimens. The results presented below 

correspond to Fleming et. al.'6 (14) first analysis date of 9112177. The ' 
i v 

primary goal was to evaluate the survival experience among patients having 

extensive stage small cell lung cancer, comparing two regimens of chemotherapy. 

In regimen A, the "experimental" treatment, patients received cyclophosphamide 

(CTX), vincristine (VCR), VP-16, and cis-platin (CDDP) alternating with 

adriamycin (ADR) and imidazole carboxamide (DTIC). Regimen B, the "standard" 

treatment, consisted of ADR, VCR, VP-16 and CDDP alternating with CTX and 

DTIC. 

SMALL CELL LUNG CANCER SURVIVAL DATA. 
STATUS: l=CENSORED Z=DEATB 

REGIMEN= B.STND REGIMEN=A_.EXPT 

OBS DAYS STATUS OBS DAYS STATUS 

1 19 1 
2 119 1 
3 136 1 
4 216 1 
5 312 1 
6 398 1 
7 9 2 
8 10 2 
9 99 2 

10 122 2 
11 148 2 
12 228 2 
13 233 2 
14 280 2 
15 282 2 
16 375 2 
17 420 2 

18 8 1 
19 47 1 
20 62 1 
21 87 1 
22 98 1 
23 155 1 
24 166 1 
25 187 1 
26 223 1 
27 335 1 
28 373 1 
29 383 1 
30 395 1 
31 402 1 
32 488 1 
33 22 2 
34 142 2 
35 171 2 
36 635 2 



C 

,O.Sfno II 11.00 I.74 o.,o 
4-.LWT :: 4 I.00 5.20 0.97 
_---------_---__---_____I______________--- 
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0 1 Test being specified. 

0 2 Variable names which reflect time and event status, respectively. 

0 3 The beta, rho, gamma specifications. Note default beta is zero. 

0 4 Tbe class variable and sample names. 

Note: to get the samples into the desired sort order for subsequent one- 

sided tests we defined the standard regimen B as '-B.STND' and the 

experimental regimen A the value 'A-.MPT' so that the sample with the 

hypothesized better survival would appear second in SAS sort order. 

0 5 Number of valid observations in sample. 

P  

0 6 

0 7 

0 a 

0 9 

0 11 

0 12 

0 13 

Sum of observed number of events in sample. 

Sum of weighted observed number of events. 

Sum of weighted expected number of events. 

Note: When rho=gamma=O the weights are unity. When rho>0 or gamma>0 are 

specified, the weights are, in general, values less than unity; hence, in 

this situation the totals for@ and@ are less than the total @. 

Also, the linear rank statistics are non-parametric procedures. As such, 

in the 2-sample problem, for example, events occurring in one sample after 

the longest event or censorship time in the other sample are ignored. In 

this example, note that the total for 6 is 15, while for 7 and 8 it 0 0 0 
is 14. The death at 635 days in the regimen BL EXPT is in essence ignored. 

As an exploratory tool, this displays the samples for which differences 

between weighted observed and expected number of events stand out. The 

total conservatively estimates the correct chi-square value printed at 10 . 0 
Degrees of freedom. 

so-tail P-value associated with test of Ho which in this case is the 

test of equality of survival curves. 

Observations will be deleted and noted here if any of the following 

conditions hold: 

- missing values: if the time-variable, event-indicator-variable, or 
SOFT-variable as required are missing. 

- invalid data: the time-variable is negative or the status-variable is 

other than a 1 or 2. SOFT, if used, must satisfy ~C_SOFT(~. 
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0 14 The rho value specified in the RAPPARHO statement. 

0 15 V is the maximum of the one-sided, standardized differences. TIME(V) is 

the time in days when V was observed. A is the maximum of the two-sided, 

standardized differences. TIME(A) is the time in days when A was observed. 

R is the average survival over the two samples at the largest time which 

satisfies No(t)*Nl(t) > 0. In this example, the time would be 420 days. 

0 - 16 This two-tail P-value tests whether or not the ratio of the hazards for 

regimen A_.EiPT over regimen-B.STND differs from 0.5 (i.e., e -0.693 =0.5), 

assuming a constant hazard ratio over all times. To obtain a one-sided P- 

value associated with H 
0 

: 1A(t)/),B(t)L0.5 versus HA: x,(t)/xB(t)>O.S where 

x,(t) and AB(t) refer to the population hazard for regimen A and B 

respectively, we focus on the sum of the weighted observed and the sum of 

the weighted expected numbers for the A_.MPT regimen. We see a value of 

3.00 for the sum of the weighted observed number of deaths and 5.26 for the 

sum of the weighted expected number of deaths. The one-sided P-value is 

hence l-[l/2 x 0.20891 = 0.89555. Had the sum of the weighted observed 

been greater than the sum of the veighted expected, the one-tail P-value 

would have been [l/2 x 0.20891 = 0.10445. 

In summary, the hazard ratio as described above is not detectably different 

from 0.5 in the two-sided context (P=O.2089). Also, the hazard ratio is 

not detectably greater than 0.5 in the one-sided context (P=O.89555). 
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