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ABSTRACT 

A nonparametric estimator of the survival distribution is presented. 

The estimator, applicable when dealing with censored data and related 

to the Kaplan-Meier estimator, is shown to be asymptotically unbiased, 

to be uniformly strongly consistent, and when properly normalized to 

converge weakly to a specified Gaussian process. Further, in small 

or moderate samples with untied data, the estimator is found to 

nearly always have smaller mean squared error than the Kaplan-Meier 

estimator whenever the true survival probability is at least 0.20. 

KEY WORDS: Kaplan-Meier estimator; Cumulative intensity function; 

Mean squared error; Nonparametric estimation; Survival distribution; 

Censored data. 
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1. INTRODUCTION AND SUMMARY 

For several hundred years statisticians have attempted to 

formulate methods which could be used in the estimation of the 

survival function, S(.), when dealing with randomly censored data; 

that is, data which is incompletely observed due to causes such as 

early termination of a study, loss-to-follow-up, or competing risks. 

Let X be a random variable denoting the time to a well-defined 

event, hereafter referred to as "death." The survival and intensity 

(or hazard rate) functions are then defined to be S(t) = P(X > t) and 

v(t) = - d/dt &n S(t) respectively, for t > 0, where v(t) is assumed 

to be continuous. 

Several authors have investigated parametric estimators for S(t). 

Unfortunately unless the parametric assumptions can be justified from 

prior information, the resulting class of distribution functions 

satisfying these assumptions is usually not sufficiently broad. 

Others, such as Chiang (1968), have investigated estimators which 

arise when parametric assumptions are made only over subintervals. 

In general, estimation of conditional probabilities of survival over 

pre-specified sub-intervals leads to a class of estimators called 

"actuarial". In addition to Chiang, Berkson and Gage (1950), 

Elveback (1958), Gehan (1968), Cutler and Ederer (1958), and 

Littell(1952) have proposed well-known actuarial estimators. 
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More recently,sophisticated covariate analysis techniques have 

been developed enabling one to make use of concomitant information. 

Commonly the effect upon survival of such information has been modeled 

by means of regression on the intensity function (Cox 1972). 

However, despite the useful covariate techniques, the standard 

nonparametric survival curve estimator remains, in practice, a most 

valuable, reliable, and frequently used descriptive tool. Cndoubtedly, 

the product-limit estimator proposed by Kaplan and Meier is the most 

commonly employed. Assume one observes N individuals and let 

{Tj 1 1 < j < dl represent the ordered d distinct observed death - - 

times. (Here, as well as in Sections 2 through 4, we assume no ties 

exist among observed death times.) If the left continuous process 

N(t) represents the number of individuals still alive and under 

observation just prior to t, then the Kaplan-Meier estimator is 

defined by 

This estimator has been shown to maximize the likelihood of the 

observations in the class of all possible distributions (Kaplan and 

Meier 1958). As N *m, its bias converges to zero exponentially and 

unlike the actuarial estimators, it is strongly consistent (Aalen 1978). 

Further it has been shown fi (Sl(.) - S(.)) converges weakly to a 

mean zero Gaussian process with covariance kernel 
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S(s) S(t) ; [C(u)]-' d[S(u)l-' 
0 

for s(t, where C(u) is the probability an individual is uncensored at 

time u (Breslow and Crowley 1974). 

One somewhat undesirable feature of S,(t), however, is the fact 

that, especially when applied to censored data, it tends to be more 

variable than other estimators over the region where N(t) is small. 

In fact, if the last observed individual dies at time y. S,(t) = 0 

for all t )y independent of the value of S, just prior to y. An 

estimator closely related to the Kaplan-Meier, but not as volatile 

at small N(t), will be formulated below. 

Let 
t 

B(t) = / v(s)ds 
0 

be the cumulative intensity function and define its estimator by 

A 
11-l B(t) = 1 

{j:Tj<tl 
[N(Tj, 3 

(see Nelson 1969). Since v(t) = - d/dt Rn S(t), it follows that 

S(t) = 1 - :: S(s)dB(s), (1.1) 
0 

which has solution 

S(t) = emBtt). (1.2) 
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Inserting i(s) into (1.1) one can recursively define the estimator 

i(t) = 1 - ; i(s-O)d;(s), 
0 

(1.3) 

where the integral is Lebesque-Stieltjes. The resulting survival 

estimator in (1.3) is the Kaplan-Meier. Thus there is reason to 

believe one may obtain an improved, at least less variable, estimator 

than the Kaplan-Meier by solving (1.1) first, yielding (1.2), into 

which one inserts the cumulative intensity estimator. The resulting 

estimator, S2(t) = e-B(t), is the one which we propose to study. 

Since 

S2(t) = Tl 
Ij:TjLt] 

exp I- rN(Tj)l-‘~ 3 (1.4) 

s,(t) 
";m= t-J 

1-xj 

(j :fjLt.l emxj 
(1.5) 

where xj = [N(Tj)]-', implying S,(t) 5 S2(t). 

Inspecting (1.4) and (1.5), S2(t) is less variable for small N(t), 

as expected. However, since e-' -1-x for small x, the two estimators 

differ little for large N(t) leading one to suspect that asymptotic 

properties of Sl summarized earlier can be similarly verified for S2. 

This verification will be presented in Section 2 of this paper. 

A small sample comparison of the mean squared error (MSE) of 

Sl and S2, of particular interest to the applied statistician, is 

presented in Section 3 for the situation in which the data are 

uncensored, and in Section 4 for censored data using Monte Carlo 

simulations. 
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It is shown in these two sections that S2(t) = e -i(t) has smaller MSE 

than the Kaplan-Meier estimator generally whenever the true survival 

probability S(t) is greater than .20. Finally in Section 5, an application 

of the estimator S2(t) to data containing ties in observed death times 

is discussed and an example is presented. 

2. THE STATISTICAL MODEL AND ASYMPTOTIC RESULTS 

Assume N independent individuals are observed, each of whom is 

subject to arbitrary right censorship. Specifically, assume the iJ!J- 

individual has true survival time Xi and censoring time yi so 

S(t) = P(Xi>t) and C(t) = P(Yi>t). Then one is able to observe only 

Zi =min(Xi, Yi) and 'i = I[X. 5 y.1 
1 1 

where ILA] is the indicator random variable for the event A. 

Independence is assumed between the censoring and survival 

distributions, implying n(t) E P(Zi>t) = S(t)C(t). 

Let T be any positive number such that V(T) > 0. All asymptotic 

results obtained in this section will be with respect to the interval 

T = [0, ~1. 

Observe that the definition of S2(t) is somewhat arbitrary 

for t such that N(t) = 0. Asymptotic results in this section 

are obtained by assuming 
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S*(t) =S2(Td) = exp C- jl ~ [N(Tj)l-‘~ 

for all t ?Td. However, each result can be imediately generalized 

to apply as well to the estimatoryq(t) where y?:(t) = S,(t) if N(t) > 0 
L L L 

and S2(t) = h(t) if N(t) = 0, where h(t) is an arbitrary random 

variable such that 0 < h(t) < 1. - - 

2.1 Uniform Strong Consistency of S2(t) 

In Theorem 2.1 of this section, uniform strong consistency 

will be shown to follow from the validity of that same property 

of spw 
for i(t). 

Theorem 2.1: sup (a/Log N)le -ii(t) 
O<-tiT 

-e-B(t)l -f 0 a.s. as N + ~0 
-- 

Proof: Since (eX-1) 5 xex for any XE(~, m), (e &)_,-q 

= ,-B(t) [,(B(+~(t))~,] < e-"(t)(B(t)-&)) ,(8(t)-B(t)) 
- 

== (B(t)-;(t)) emBct). Similarly, -(e -B(t)-,-B(t) ) 5 (i(t)-f3(t))e-B(t). 

Thus [B(t)-;(t)] emBft) 2 e-'(t) - e-B(t) ( [B(t)-i(t)] e-'(t). 

The theorem now follows from Proposition 3(i) of Aalen (1978). 

2.2 Asymptotic Unbiasedness of S*(t) 

Unlike the bias of the Kaplan-Meier estimator which converges to 

zero exponentially, the bias of S*(t) converges to zero at a linear 

rate as N +m, as shown in the following theorem. 
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Theorem 2.2: 

N(E S2(t) - S(t)) + l/2 S(t) : [C(s)]-' d[S(s)l-‘, as N *m 
0 

Proof: For notational simplicity denote N(t+O) by n(t). Let 

R(t) = h(t)l-' if n(t) > 0 and be 0 otherwise. Then using a technique 

of Aalen (1978), 

e -i(sth) = e-“(S)rl-I(s h)(l-e-R(S))] (l-U(s,h)) I 

where I(s,h) is an indicator of the event that at least one observed 

death occurs during the interval (s, s+h], and the random variable 

U(s,h) E [O,ll such that P(U(s,h) P 0) =0(h). 

Thus, if we set f(s) = E e-B(s), 

f(s+h) - f(s) = -E CI(s,h) e -'(') (1-e-R(S))] f o(h). 

Since E(I(s,h)ln(s)) = q(s) v(s) h + o(h), 

f(s+h) - f(s) = -h V(S) E{n(s)e-'(') (1-e-R(S))1 t o(h), from which 

we can deduce 

f'(s) = -v(s) EIn(s)e-B(S) (1-eWR('))] 

= -u(s) E{e-B(S) Ifn(s),o]} + v(s) EIn(s)e-B(S) [R(s) - (l-e-R(S))J] 

= -v(s) f(s) + v(s) Eie-‘(‘) I~n(s)+l} f v(s) E{n(s)e-B(s)lR(s) - (l-e-"(s))]l. 
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t 
-1 v(u)du 

Adding v(s) f(s) to both sides, multiplying by e ' 

and integrating, we have 
t 

, 

E ,-i(t) _ ,-B(t) _ ' d 
-I w(u)du 

-- Fe 

s f(s)lds = K,,,(t) + LN(t) 

where 
t 

KN(t) = f- v(s) 

-I v(u)du 

ErI~q(s)=Ole -B(s)] e s ds 
0 

and t 

,) = F v(s) E{q(s) ewB(')i2 i-l)"[R(s)l"in!)e- v(u)au ds. 
0 

L&t 

KN 
(t), proven by Aalen to be the bias of the Kaplan- 

Meier estimator, clearly converges to 0 at an exponential rate, 

Now 

IN L,,,(t) - y- 5 [c(s)]-’ d[Wl-’ I 

t 

= 1 i E{,-gb) 
-/ v(u)du 

n(s) R(S) ii s (-l)“[R(s)l”-l/n!? v(s) e S ds 
r-F2 

t 

-+ t -B(s) Kw-’ e 
- J v(u)du deB(S) 

s I 

= ( 5 Ele-i(S) I~,,(~),~] 
-4 v(u)du 

N[i R(S) - Y wl] v(s) e ’ ds 
F3 

-i le t -B(s) 
-: v(u)du 

[7r(s)l-' v(s) e ' 
0 

dsl 
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= ( ii EIe -i(s) ILn(s)>ol (NR(s) - [+)I-‘) 
+ 

-j: v(u)du 

+ (es'(') ILq(s),ol - e+(')) [n(s)]-'1 u(s) e ' ds 

t 

- : E{e- as, 
-/ v(u)du 

I1rlts),ol N y J-R(s)]"-') v(s) es dsl 
0 ~3 n! 

I  (NNs) - rds)i-‘)I 

t 

+ ost$ Ele -“B(s) 1 -B(S) < tri(s)>Ol - e 

-I v(u)du 

([T(t)]-'1 i v(s) e ' ds 

t 
-I v(u)du 

+ F E{e-B(S) I~n(s),01NIR(s)12/61 v(s) e ’ 
0 

ds 

1 
17 Io$!$ EjNR(s) - m(s)l-‘1 f E o:I!!tle 

-ii(S) 
%l(s)>Ol 

_ ,-B(s) I[n(t)l-‘1 (l-S(t)) + ; of-z<Pt E NtR(s)12 (l-S(t)) 

The theorem now follows by Lemma 4.2 (ii) of Aalen (1976), by 

Theorem 2.1, and by the fact that P(n(t) = 0) + 0. 

2.3 Weak Convergence 

Let D(T) be the space of functions on the interval T = [0,-c] 

which have discontinuities of only the first kind, and let do be the 

Skorohod metric on D(T). In this section, the term "weak convergence" 

will be used with respect to do on D(T), and will be denoted by 4. 
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Let W represent a Wiener process and define the non-negative 

deterministic function g on T by g2(s) ==[~(s)]-' V(S). The process 

9 = ($(t)ltcT] defined by 

e(t) = emBtt) : g(s)d U(s) 
0 

is then a mean zero Gaussian process with covariance kernel 

S(s) S(t) ; Kh)l-’ d[S(u)l-’ 
0 

for s 5 t 

In Theorem 2.3, the sequence of processes +N = {m(e -6(t) - e-B(t))lteT1 

is shown to converge weakly to the same limiting process to which 

IJT(Sl(t) - S(t))jtcT? converges. 

Theorem 2.3: As N -+a 

9, E Efi(S2(t) -S(t))ltcT] --3 $I - Ie-B(t) 4 g(s)dW(s)ltcT]. 
0 

Proof: By Taylor's series expansion, 

(t) - S(t))= Ke -B(t) Ie(BwBw _ ,] 

(2.1) 

=hTe 

* 
;-B(t) Wtbih + (i3(t)-ih)2 ; w-#jqll 

Observe that 

sup Ir&(tbii(t)l f o<t<-r -- ,*1 

( o:!& le(t)-~(t)leia(t)-8(t)l -+ 0 a.s. 
-- 

by Proposition 3(i) of Aalen (1978). 

(2.2) 

- 



-14- 

Further, by Theorem 8.2 of Aalen (7976), 

t 
It&T) =z 1; g(s)dW(s)lteTl. 

Theorem 5.1 from Billingsley Using Corollary 1 of 

and (2.3) imply 

(2.3) 

1968), (2.2) 

{Kc-B(t) (B(t ,,-,(t))'$ w JteTl+ 0. (2.4) 

Since (2.3) implies 

1 ATesBit) 
t 

(B(t)-i(t))jtsTl 3 Ce-B(t) I g(s)dW(s)ltcTl 
0 

one can see from (2.1) that the Theorem follows from (2.4) and (2.5) 

by once again applying Corollary 1 of Theorem 5.1 of Billingsley (1968). 

3. MEAN SQUARED ERROR IN SMALL SAMPLES OF UNCENSORED DATA 

Since mean squared error is generally accepted to be a primary 

measure of accuracy of an estimator we examined in small samples the 

behavior of the MSE of both S, and S2 as a function of S(t). In this 

section, as in Section 4 when investigating MSE in censored data, it 

is assumed no ties exist in the data. To evaluate MSE we initially 

defined 

S,(t) = Sl(Td) 2 ,i {l-[N(Tj)]-'1 
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and 

S*(t) =S2(Td) : exp I- ! [N(Tj)]-'1 
j=l 

for all t 2 Td. Suppose p = S(t), and let ^i,(p,N) = E(S,(t) - D)2and 

T2(PJ) = E(S2(t) - P)~. In uncensored data, it is well known that 

+LN) =~(l-P)/N. Further, if one takes Sk = 1 t l/2 t l/3 t . . . t l/k 

it is not hard to show that 

%(P,N) = e-2sN [(3L3p)2pN+(:N-’ -eSNp)2(N:l)pN-l (1-p) 

t t (1 - e sN 
. . . p)2 N(~-P)~ . 

I 

Values of %(p,N), <(p,N) and y(p,N) 5 <(P,N)/~,(P,N) have been 

computed for p = .02u, u = 0, 1, 2, . . . . 50, for each of the values 

N = 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 40, 50, and 100. Some 

representative results are given in Table 1. 
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The table shows that when S(t)"--, the Kaplan-Meier estimator 

(in this case the empirical distribution function estimator) is 

substantially more accurate, but that when S(t) 2 .2, S2 is more 

efficient in the MSE sense. 

An alternative and probably preferable method for evaluating the 

relative accuracy, i.e. relative MSE, of S2(t) to S,(t) will now be 

described. Since 

i(t) = {j:TC<t) [N(Tj)l-‘~ 
J- 

we have that 

;;(t) 5 ,!, (N-k+l)-' z b, 

and ,'Ta S2(t) = emb > 0. In fact, when the data are censored S,(t) 

and S2(t) both have a nonzero limit with positive probability, with 

that limit dependent upon the observed censoring pattern. Let 

Y = inf {t:N(t) = 01. It seems that a more natural way to evaluate 

the accuracy of S2(t) might be to observe that if N(t) = 0, i.e. if 

t > y, S2(t) does not provide a point estimate, but rather an interval 

estimate assigning uniform likelihood over [O,eeb]. With this 

interpretation, the squared error of S2(t), conditional on N(t) = 0, 

would be 

eb Y-b (u-S(t))2du = l/3 e-2b - S(t) cob t [S(t)]* . 
0 

When the formulas yielding the values in Table 1 are suitably modified, 

the mean squared errors now denoted by u,(p,N) and n2(p,N) and their 

ratio r(p,N) are obtained. Since u,(p,N) =$,(p,N) is tabulated in 

Table 1, only values of r(p,N) appear in Table 2. 
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It is clear by comparing Tables 1 and 2 that the new interpretation 

of the information provided by S2(t) for t > Y does not make a substantial 

change in the assessment of its efficiency relative to S,(t). This 

result could be anticipated since, except at values of t such that 

s(t) Z50, the probability that N(t) is positive, i.e. that t < y, is 

nearly 1 even for small sample sizes. 

It can be inferred that, when applied to small or moderate sized 

samples of uncensored data, S2(t) = e -ii(t) has smaller average squared 

deviation from the true value S(t) than does the Kaplan-Meier or 

empirical distribution function when the true value S(t) ) 0.2. 

4. MEAN SQUARED ERROR IN SMALL SAMPLES OF UNCENSORED DATA 

4.1 Method 

It is possible to calculate relative efficiencies, i.e., relative 

MSE, of S2 and S, similar to those discussed in Section 3 but more 

generally now for the situation in which the data are subject to various 

patterns of censorship. As noted earlier, these efficiencies may be 

calculated by assuming that S, and S2 remain constant after y, the 

last observation time, or by assuming both provide interval estimates 

for S(t) after that last observation. Since one can anticipate either 

approach would lead to the same relative efficiency, only the latter 

was employed in this Section. 
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Assuming, without loss of generality, that the true survival 

distribution is U(O,l), i.e. S(t) = l-t for O<t<l, three different -- 

censoring distributions yielding mild, moderate or severe censorship 

were considered. Specifically, C(t) was assumed to be U(O,2) yielding 

25% censorship, then U(O,l) yielding 50% censorship, and finally U(O,1/2) 

yielding 75% censorship. Samples of size N = 10, 20, 35, 50, 100 were 

considered. 

Since the exact formulas for nl(pNN) and ~2(p,N) are very difficult 

to obtain in censored data even for N as small as 5, Monte Carlo 

simulations were employed to obtain approximations. 

For each N and each censoring distribution C, an independent 

collection of N pairs (Xi,Yi) were randomly generated such that the 

independent random variables Xi and Yi were distributed as S and C 

respectively. After determining (Zi, 6i) for i = 1, . . . . N, S, and S2 

were calculated. The steps above were repeated n = 5000 times where, 

.th for the J repetition, the estimators are denoted Slj and S2j. The 

estimator S.. 
1J 

and its squared error M.. were recorded at 
1J 

S(t) E P = .02u, IJ = 0, . . . . 50, where as before 

with 

i 

[Sij(t) - S(t)12 if t IY 

Mij(t) = 
b 

b 
-1 . . 

J1J(u-S(t))2 du if t > y 
ij o 

blj=-SliTd 
j 

) = ij ~~-[N(T~~)]-'I 
k=l 

dj 
bzjsS2Ud 

j 
) = exp C C [N(Tjk)l-'I, 

k=l 

- 
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and IT. Il<k<d.I representing the set of dj distinct observed death times 
Jk --J 

.th in the J repetition. 

If C(t) =1-t/a for O<t<a, then the mean squared error of Sij(t) -- 

should be denoted by EMij(t) = +(p,N,a) since it is now a function not 

only of p and N, but of the censoring pattern relative to the survival 

distribution as well. However, in the following notation p, N and a 

will be deleted. 

If we define ai = E(M.. - ui)2, 
1J 

then the coefficient of variation 

of M.. is 
1J 

which incidentally can be shown to converge to nas sample size N 

grows large. 

Observe that C(Mlj, M2j): j = 1, . . . . n) is an independent 

collection of bivariate random variables such that EMkj = uk and 

E[(Mkj - u,) (Mnj- @ = O,,R' where we have previously denoted 

'kk = "k *.k, RE Cl,*]. , 

Define the obvious estimator of ui by 

Gi =$ = l/n : Mij. 
j=l 

-- 
The relative MSE, r = n2/ul,wi11 then be estimated by i = ;,I;, = M2/Ml. 

Observe 

E!$ = 5, var Ni = l/n oi2 and cov(M,, M2) = l/n c12. (4.1) 
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In order to determine var g 5 or2, define f(xl, x2) = x2/x1. 

Let i, j E C1,21. By Taylor's series expansion, if fi = af/axi and 

f 
ij = a2f/ax.ax i j' then 

2 
f(H,, K2) = f (y, y) 

2 2 
+1/2 c c fij(",. a*) (Hi - l$) (M. - IJj) 

i=l j=] J 

for some CX~ between pi and Mi. 

Thus 

(H* - lJ$ m, - 11,) + “2 c’li, - lq J2 
2 3 * 

9 "1 

By (4.2), one can show 

-- 
E M2/M, - u2/y = 0(1/n) 

lim 
where we denote g, = O(nWC1) if n em n"gn = k for some constant k. 

Further, by (4.21, it can be shown that 

E(R2/E, - y/~,)~ = 
E(ff2 - v212 

2 
+$E(Fi v)2 

1- 1 
Y 9 

- %E -' 

Y 

II,) CM2 - 11,) + o(l/n2). 1 

(4.2) 

(4.3) 

(4.4) 

- 
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Using (4.1), (4.3) and (4.4) 

Thus for large n, the coefficient of variation of p = M2/H, is 

approximately 

022 
2 

1 - 1 Yz2 

2o12 +y -_ - 
dii ulY u12 

Its obvious estimator is given by 

where 

A -- 
Uk& =A i (M~~M~~) - MkMR for k,R E C1,21. 

j=l 

4.2 Results 

Table 3 contains a representative selection of the results obtained 

from the Monte Carlo simulations of data 751, 50% or 25% censored. For 

each censoring distribution the table presents ii, the estimated MSE 

Of si, multiplied by 1000 at times at which the true survival 

probability S(t) = p is .9, -7, .5, .3 or .l. Sample sizes N equal 

to 10, 20, 35, 50 or 100 are considered. 



The coefficient of variation of ii, not presented in Table 3, was 

found to be approximately equal to fi/m- .02 in most cases, as 

predicted earlier for large values of N. In addition to values of & 

Table 3 also includes p = ;I,/;,, the estimated relative MSE, as well as 

zr/r, the estimated coefficient of variation of "r, which is multiplied 

by 1000. 

It appears from the table that for all censoring distributions 

inspected and sample sizes 10 to 100, the estimator S2(t) = e 4(t) 

has smaller MSE than the Kaplan-Meier estimator S,(t) when the true 

survival probability S(t) is at least 0.2, a result consistent with 

that obtained for uncensored data in Section 3. Table 4 makes this 

fact more obvious. Define A = {(.02)u:u = 0, 1, . . . . 501 and let pL 

represent the largest element in A such that p - 2 or > 1 at all values 
* 

p in A smaller than or equal to pt. Similarly let p, represent the 

smallest element of A such that G + 2 Gr < 1 at all values p in A 

greater than or equal to p,. Then (p,, p,) forms a type of "confidence 

interval" for the region or point at which r = 1; that is, with 

reasonable certitude we can state that r > 1 for all p ( pL and 

r < 1 for all p 2 p,. Table 4 contains (p,, p,) for the various 

censoring distributions and sample sizes discussed earlier. It also 

contains for uncensored data (pk*, pu*). the true region containing 

the point at which r = 1, where p,*, pu* E A. 
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One result from the Monte Carlo simulations of censored data which 

is not shown in Tables 3 or 4 and which was unlike results obtained 

for uncensored data in Section 3 relates to the behavior of r when 

P = S(t) %O. In Tables 1 and 2 it was observed that r>>l when p-0 

since L++ 0 as p -f 0. However since n, fails to converge to 0 as 

p + 0 in censored data, it was found that r was not substantially 

greater than 1 for p -0 when the data was moderately censored. 

It is also of interest to comment briefly on the situation in 

which S(t) = l-t, 0 it < 1; and C(t) = 1-2t, 0 (t ~1/2. In this - 

case one would normally be interested in the estimator of S(t) only 

over the region for which we have data; i.e. 0 < t (l/2. 3ne can - 

observe from Table 4 that r = u2/p1 is less than 1 throughout that 

region. 

4.3 Conclusion 

It can be concluded quite generally that, when dealing with 

censored or uncensored data having relatively infrequent or no ties 

in observed failure times, the estimator S2(t) = e -it(t) is a more 

efficient estimator of the true survival probability S(t) than the 

Kaplan-Meier estimator S,(t), whenever S(t) 2 .2. This result is 

particularly enticing in many survival studies, such as in biomedical 

research in which one or more groups of patients are often followed for 

a limited period of time after onset of disease or initiation of treatment, 

since one is quite certain that the true survival function is much 

larger than .2 over the entire interval on which it is being estimated. 
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Examples include epidemiological record studies estimating survival of 

men with carcinoma of the prostate following radiation treatment or 

radical prostatectomy, or prospectively randomized clinical trials 

comparing various chemotherapeutic agents in women with breast cancer. 

5. TIED DATA AND AN EXAMPLE 

In this section we will discuss the estimators Si(t); i = 1, 2; 

when applied to data in which ties exist between observed death times. 

Recall that for the N individuals under observation, we have defined 

CTj:l (j (d1 to represent their d distinct ordered observed times of 

death. If we let D(t) represent the number of deaths observed at t, 

then we are now eliminating our previous assumption that D(Tj) = 1 

for j = 1 , . . . . d. 

The Kaplan-Meier estimator in this situation is defined by 

s,(t) = x 
Cj:Tj(tl 

Momentarily formulate a new data set having no ties among observed death 

times by assigning, to the D(Tj) individuals observed to die at Tj, 

distinct new times of death each infinitesimally to the left of Tj. 

Observe that Kaplan-Meier estimator has the interesting property that, 

when applied to this new data set, it yields the same estimate of S 

that was obtained when it was applied to the original set containing 

tied data. It would be desirable to have S2 share this same interesting 

property so that the comparative behavior of S, and S2 established in 

previous sections would carry over to the tied data situation. 
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Clearly this will be the case if we define S2 by S2(t) = exp (-i(t)) 

where 

D(Tj)-1 

(N(T~) - k)-' 

The next example shows the straightforward calculation of S, and S2 

in a set of data containing ties. 

Example 1. Recently a Phase II clinical trial was conducted at the 

Mayo Clinic to determine the efficacy of an anti-tumor chemotherapeutic 

agent, Maytanzine, in patients with advanced head and neck carcinoma. 

Survival times of the 22 patients from first day of treatment were 

18, 19, 23, 23, 23*, 44, 54*, 74, 74, 96, 109*, 114*, 119*, 125*, 133, 

135*, 141*, 156*, 167*, 238, 253* and 283 days, where * denotes a 

censored observation. Table 5 contains the calculation of Sl and S2 

for this data. Observe that the Kaplan-Meier estimator S, and 
n 

S2 = exp (-6) differ little over the region in which N(t) is more than 

ten. However, as expected from earlier discussion, S, is much more 

volatile when N(t) is less than 5, with S, dropping from 0.36 to 0 at 

283 days due to the one death observed at that time. 
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TABLE I 

;2(p,N) x lo3 /r;,(P>V x 103 

i'(p,N) 

N = Sample Size 

P = S(t) _---_- '0 ___.-- -- 20 50 
ZZZ-~--.-.-.-- ---- ------ ----- - ____- ----.------------------ 

.9B 1.776/ 1.963 0.9331 0.980 0.384/0.392 
.906 ,952 ,980 

.94 
5.115/ 5.5&c) 2.685/ 2.820 1.106/1.128 

.907 ,952 ,981 

.9 8.172/ 9.000 4.287/ 4.500 1.765/1.800 
,908 .953 .981 

.8 
14.5!6/!6.030 7.635; 8.000 3.!41/3.200 

.9il ,954 .981 

.7 
19.2:2/21.030 10.042/10.5OO 4.126/4.200 

,915 ,956 ,982 

.6 
22.077!24.000 11.510/12.000 4.721j4.800 

,920 ,959 .953 

.5 
23.:70/25.000 i2.037!12.500 4.925/5.000 

,927 .963 .955 

.4 
22.488/24.000 11.624/12.000 4.?40/a.800 

.937 ,969 .987 

.3 
20.032,!21.000 10.?86/10.500 4.%;;;.200 

,954 ,978 

.2 ;5.831/16.000 7.367/ 8.000 3.:98/3.200 
.989 .996 ,999 

.I 9.993/9.000 4.732,' 4.500 1.540/1.800 
1.110 1.051 1.022 

.06 
7.263/ 5.640 

1.288 
3.;01;52.820 1.187/1.128 

. 1.051 

.02 4.358/ 1.960 1.575/ 0.980 0.479/0.392 
2.223 1.607 1.223 

100 ---1 _-- -- 

0.1?4/0.196 
,990 

0.558/0.564 
.990 

0.891/0.900 
,990 

1.585j1.600 
.C30 

2.081/2.100 
.991 

2.380/2.400 
.991 

2.481/2.530 
,993 

2.385/2.400 
,993 

2.091!2.100 
,996 

1,599,f:.600 
,999 

o.yy;.900 
. 

0.579,'0.564 
1.027 

0.216/0.196 
1.105 

- 



TABLE II 

r(p,N) 

N = Sample size --~_III_-_-----__c ------ 

P = S(t) 'O ---Lo- 50 100 
----- _I-- -- 

-98 .906 ,952 ,980 ,990 
.94 ,907 ,952 .981 .990 
.90 ,908 .953 ,981 .990 
*SO ,911 ,954 ,981 ,991 
.70 ,915 .956 ,982 ,991 
.60 .920 ,959 ,983 ,992 
.50 ,928 .963 .985 ,993 
.40 ,942 ,969 .987 .994 
.30 .973 ,979 ,991 ,996 
.20 1.048 1.003 ,999 ,999 
.I '0 1.244 ?.li? 1.025 1.012 
.06 1.412 1.252 1.075 1.028 
.02 1.875 1.639 1.353 1.166 



TABLE III 

;- &, ; i.e., MSE of S2(t) = e -kt) relative to MSE of S,(t), 

the Kaplan-Meier estimator 

j2 x lo3 / j, x lo3 

;; (G,/ iq x lo3 

C(t)-U(0, l/2) 

P = S(t) N=lO N = 20 N = 35 N = 50 N=lOO 

.9 

.J 

.5 

.3 

.l 

.9 

.J 

.5 

.3 

.l 

.9 

.I 

.5 

.3 

.l 

9.40/10.53 
.8929; 2.13 

36.39/42.61 
.8541; 4.91 

84.02198.74 
.8509; 3.66 

47.64151.33 
.9282; 4.60 

91.27183.92 
1.0876; 1.51 

8.291 9.17 
.9034; 1.72 

23.17126.06 
.8889; 3.85 

36.66/41.11 
.8917; 5.31 

46.42149 .a1 
.9320; 5.95 

28.01/24.96 
1.1221; 5.07 

8.451 9.32 
.9065; 1.63 

21.49j23.80 
-9028; 3.30 

28.23i30.95 
.9120; 4.98 

29.62/30.19 
.9812; 5.98 

20.01/16.02 
1.2487; 7.04 

4.76/ 5.04 
.9456; 1.17 

16.21/17.85 
.9082; 3.51 

83.50/93.76 
.8905; 2.99 

38.56/41.04 
.9396; 4.27 

73.63/68.32 
1.0776; 1.19 

4.431 4.66 
.9503; 1.15 

12.13/12.89 
.9413; 2.60 

18.26/19.79 
.9225; 4.51 

25.55/27.41 
.9320; 5.76 

18.04/16.93 
1.0653; 5.71 

C(t)- 
4.41/ 4.64 
.9505; 1.09 

11.15/11.76 
.9481; 2.21 

14.78/15.61 
.9467; 3.59 

14.16/14.69 
.9643; 5.50 

9.211 7.87 
1.1698; 6.80 

2.84f 2.94 
.9671; 0.87 
9.381 9.91 
.9464; 2.29 

83.88191.69 
.9148; 2.61 

33.59135.55 
.9450; 4.05 

63.30/59.40 
1.0656; 0.98 

U(O, 1) 

2.721 2.80 
.9719; 0.84 
6.841 7.06 
.9686; 1.83 

10.25/10.70 
.9576; 3.23 

14.09/15.04 
.9367; 5.58 

11.44/11.29 
1.0137; 6.99 

U(O, 2) 

2.561 2.63 
.9713; 0.83 

6.331 6.50 
.9738; 1.69 

8.371 8.61 
.9718; 2.69 
8.151 8.38 
.9721; 4.39 
4.651 4.33 

1.0736; 6.79 

2.00/ 2.05 
.9766; 0.72 
6.68/ 6.92 
.9651; 1.82 

83.43189.36 
.9337; 2.24 

31.55132.92 
.9586; 3.55 

59.68/56.48 
1.0566; 0.84 

1.821 1.86 
.9802; 0.72 
5.101 5.22 
.9780; 1.49 

7.221 7.43 
.9715; 2.67 
9.091 9.63 
.9443; 5.25 

9.261 9.10 
1.0185; 6.70 

1.79/ 1.83 
.9789; 0.70 
4.411 4.50 
.9807; 1.43 

5.711 5.82 
.9794; 2.28 

5.501 5.59 
,984, ; 3.67 

3.221 3.05 
1.0564; 6.28 

0.98/ 0.99 
.9884; 0.55 

3.311 3.37 
.9823; 1.27 

83.58/87.41 
.9563; 1.81 

28.17129.02 
.9707; 3.06 

52.75j50.63 
1.0418; 0.62 

0.921 0.93 
.9892; 0.54 

2.61/ 2.64 
.9901; 1.08 

3.791 3.83 
.9896; 1.81 

4.581 4.67 
.9798; 3.47 
5.531 5.59 
.9904; 6.45 

0.941 0.96 
.9892; 0.53 

2.31/ 2.33 
.9901; 1.04 

3.021 3.05 
.9913; 1.61 

2.721 2.75 
.9909; 2.62 

1.46/ 1.45 
1.0060; 5.45 



TABLE IV 

"Confidence Intervals" for Points S(t) = p at which r = 1 

Uncensored 
c(t) -. U(0, l/2) C(t) -, U(O,l) C(t) w U(O,2) data 

N !Pi, P"J !:P,, PJ !P,, P"' (PI*' P"*) 
__ _.._-_ - ____ ------_-__- 

- .----I- ._-__-- _-- I__L____ --- __-___ _.-__ -_-.----_-___-_l_-l_ ____-. - -_I__c___ 

10 .22 - .24 .!4 - .18 .24 - .30 .24 - .26 
20 .22 - -26 .I2 - .18 .20 - .24 .20 - .22 

;; 822 .22 - - .26 .26 .08 .lO - - .14 .14 .14 .12 - - .20 .20 .lS .18 - - .20 .20 
100 .22 - .26 -06 - -12 .08 - .24 .18 - .20 



TABLE V 

Calculation of S1 and S2 for Head and Neck Data 
- - - - - - - - - -  - - - - - - - - - - - -___- - - I -c I I__  

k T. 'r: N(TI;) D(?k) i!:k)-"(Tk-,) ii(Tk) s1 !Tk) S2tTk) --- ..--.I------. ---- ----------_I----- .-.- 1-1 _-__ _-_- --__-_---- -.---_- --------- -----zz=== __-----__---- 

0 
1 

1: 22 0 0 1 1 
22 1 1!22 .oc55 .9545 .9556 

i :"3 21 20 : l/20 l/21 - l/19 .0931 .?957 .9091 .8182 .9111 .8226 
4 44 17 1 l/17 .2545 .7701 .7753 

6" 96 74 ;; 2 l/13 l/15 + l/14 .3926 .4695 

l3 133 238 8 
: 

; 1 115 113 ,5945 .9279 

.6674 .6:60 ‘6753 .6253 

.5390 .3594 .5518 .3954 
9 283 11 1.9279 .oooo .:455 

________ - - - - - - - -  -____ _ - . . -  - - . - - - . -  - - . . -  - - I -  -_.-_l-._l-__-_--.--- 

- 


