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ABSTRACT 

This paper proposes a class of new non-parametric test 

statistics useful for goodness-of-fit or two-sample hypothesis 

testing problems when dealing with randomly right censored 

survival data. The procedures are especially useful when one 

desires sensitivity to differences in survival distributions 

that are particularly evident at at least one point in time. 

This class is also sufficiently rich to allow certain statistics 

to be chosen which are very sensitive to survival differences 

occurring over a specified period of interest. The asymptotic 

distribution of each test statistic is obtained and then 

employed in the formulation of the corresponding test procedure. 

Size and power of the new procedures are evaluated for small 
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and moderate sample sizes using Monte Carlo simulations. The 

simulations, generated in the two sample situation, also allow 

comparisons to be made with the behavior of the Gehan-Wilcoxon 

and log-rank test procedures. 

1. INTRODUCTION AND SUMMARY 

Let X be a nonnegative random variable, and suppose X is 

interpreted as the measured time to some predetermined event. 

Since one of the most comnon applications of random variables such 

as X lies in the area of life-testing and survival theory, X will , 

hereafter be referred to as a time of death or failure. In life- 

testing applications, problems of statistical inference about 

failure time random variables most commonly arise in one of the 

following two situations: 

(a) One has a random sample Xl, X2, . . . . XN from a homo- 

geneous population of failure times distributed as X, 

and wishes to test statistical hypotheses about that 

distribution. 

(b) One has two samples, Xll, X12, . . . . XIN 
1 

, and X21. 

x22s '*-' x2N2 
from two possibly different populations 

and wishes to test the null hypothesis that the under- 

lying survival distributions are in fact the same. 

The primary intent of this paper is to present a class of new non- 

parametric test statistics, for each of the above two situations, 

in the setting where the survival time random variables are 

subject to arbitrary random right censoring. 

Motivation for the presentation of this new class of test 
procedures and necessary notation will be provided in the next 

section. In section three of this paper, the new class of pro- 

cedures will be developed for the one sample problem. The large 

sample distribution of the statistjcs will be given as well as a 

qualitative discussion of the power of these procedures to detect 

certain types of departures from the null hypothesis. A procedure 

presented by Aalen (1976), similar to a member of the class pre- 

sented here, will also be examined in section three. Section 
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four contains the development of the procedures applicable in the 

two sample problem and presents an algorithm for the computation 

of each statistic. Inspection of the power and size of the two 

sample procedures through Monte Carlo simulations appears in 

section five, while the final section of the paper outlines the 

proof of the asymptotic distributions of both the one- and two- 

sample test statistics. 

2. NOTATION AND MOTIVATION 

2.1 Statistical Model 

We will first establish some notation. Suppose Xi,, Xi2, 

. . . . X iNi is an independent, identically distributed collection 

of failure time random variables. (When there is only a single 

sample, all of the following notation will be the same, except 

that the subscript i will be dropped.) If Fi(t) = P(Xij < t), 

then Si(t) = 'I-Fi(t) is called the survival function associated 
t 

with X ij; y(t) = - g en Si(t) and f+(t) = / vi(s)ds are called 
0 

the hazard and the cumulative hazard functions, respectively. 

S.ince the death times are subject to right censorship, there will 

also be a collection of independent, identically distributed cen- 
. . 

soring times Yi19 Y i2,..., Y iNi associated with each collection of 

survival times. Let Gi(t) = P(Yij < t) = 1-Ci(t), and define 

ai = -IlnCi(t). Observe that we allow Cl and C2 to differ. 

We assume that the only information obtained about the sur- 

vival time Xij for each individual is Tij = min (Xij, Yij) and 

6 
ij = *[Xij 5 Yij]' where I[E] is 1 if the event E occurs and 0 

otherwise. If 6.. = 
1J 

l(0) then the jth individual in sample i is 

said to have an observed death (censorship) at time T... The 

type of statistical dependence between Xij and Yij alL:ys causes 

difficulties in problems of this sort. We will assume throughout 

this paper that the following two conditions hold for i = 1,2: 
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- &“ittlSt2) 
1 I t’=t2=t = 

- $fSiIt) 
lTi (t,t) si (t) (2.1) 

whenever ri(t,t) > 0, where ni(tl,t2) = P(Xij it,, Yij )t2). 

y(t) - ?qt,t) = S&t) C$). (2.2) 

Gail (1975) has shown that if a condition analogous to (2.1) also 

holds for Ci(t), thencondition (2.2) automatically holds. We 

would like to allow discrete as well as continuous censoring dis- 
# 

tributions, and the methods of Gail's proof do not apply in this 

case; thus we will assume (2.2) directly. We make the interesting 

remark here that although condition (2.1) is part of the classical 

assumptions made to insure identifiability in a competing risks 

setting, it will also prove to be necessary and sufficient in 

proving a useful martingale property later on. 

2.2 Estimation 

To define estimators using this censored survival data, let 

Ni(t) represent the number of individuals in sample i under obser- 

vation at time t, prior to deaths or censorships occurring at t. 

Ni 
Thusa Ni (t) ' jfl '[Ti j ) t] * Further Di(t) and Li(t) represent 

the number of deaths and censorships, respectively, in sample i at 

time t. Finally let {T.:j=l,..., 

sorship times and ITj:jil,..., 

cl be the set of c distinct cen- 

d) be the set of d distinct death 

times in the pooled sample. Estimation will be based upon the 

right continuous cumulative hazard function estimators 

and 

i+(t) = z 

Di(Tj)-1 

Tjlt k:O 
iNi(k}-' 

iii(t) = x 

Li(rj)-l 

,rjft kf0 
{N+T~) -D+~~)-kj-' 
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. infinitesimally earlier, and where we define C f(k) % 0 for any 

. - 

where we have adopted the convention of breaking ties between 

deaths and censorships in sample i by assuming the deaths occurred 
-1 

k=O 
f. These estimators were originally studied by Nelson (1969) and 

later by Aalen (1976) who extensively investigated their distri- 

butional properties. Si(t) and Ci(t) in turn are estimated by 

si(t) = exp {-ii(t)1 and $(t) = exp I-ii(t)}, whose properties 

have been presented recently by Fleming and Harrington (1979). 

Observe that we have assumed that the survival distributions 

Si are continuous, and hence hereafter we will consider only the 

situation in which no ties exist between death times. The test 

procedures to be proposed here, however, can be applied to data 

having a small or moderate number of tied death times by using 

these general forms of gi and 3,. 

2-3 Motivation for the New Procedures 

We will now provide some motivation for this new class of 

test procedures. The notation used will continue to be that of 

the two-sample situation. The null hypothesis to be tested then 

is Ho: Sl(t) = S*(t) for Oztlt where T is a fixed positive 

number. 

An important type of departure from Ho that may arise is 

called the "crossing hazards" alternative. When two underlying 

survival distributions have hazard functions which cross at some 

point, then the survival curves will exhibit differences over a 

time interval, but those differences may disappear outside that 

interval. The crossing hazards phenomenon can often go undetected 

by test statistics that depend upon cumulative differences in the 

hazard functions. The Gehan-Wilcoxon (Gehan, 1965) and the log- 

rank (Peto and Peto, 1972) statistics are of this type (see 

Prentice and Marek, 1979). It is reasonable to expect, though, 

that procedures based upon maximum observed differences (perhaps 

weighted in some fashion) in empirical survival functions or in 

empirical cumulative hazard functions might be more likely to 
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detect crossing hazards alternatives or more generally any type of 

departure from HD that is particularly evident at one point in 

time. Further, if the changes in these observed differences in 

empirical functions could be more heavily weighted over intervals 

where one might anticipate that the departures from HO will occur, 

one would obtain even greater sensitivity to detect this type of 

alternative. 

The techniques proposed here attempt to deal with these 

issues. All the hypothesis test statistics are Kolmogorov- 

Smirnov-type statistics, that is, they are suprema of appro- 

priately scaled empirical processes; they are, therefore, 

sensitive to differences in underlying survival or cumulative 

hazard distributions which are large at a particular point in time 

but may disappear at other time points. The class of proposed 

procedures is sufficiently rich to allow particular statistics to 

be chosen which are very sensitive to differences occurring over a 

specified period of interest. Since we assume that the data are 

subject to random right censorship, the procedures obtained will 

in addition have more general applicability than those proposed by 

Dufour and Maag (1978), Barr and Davidson (1973), Koziol and Byar 

(1975), and Schey (1977), all of whom considered only certain 

restrictive forms of censoring. 

Throughout this paper, let T be a fixed constant satisfying 

TV > 0, i = 1,2, and set T = [O,T]. Let d be the Skorohod 

metric on the space D(T) of functions on the interval [O,T] which 

have discontinuities of only the first kind (cf. Billingsley 

(1968)). Hereafter, the term "weak convergence" will be used with 

respect to the product metric d, on the product space D"(T) for 

appropriate values of n, and will be denoted by pz. 

3. ONE SAMPLE GOODNESS-OF-FIT TESTS 

3.1 Formulation and Large Sample Properties of the Test Statistic 

In this section we will treat only the situation of a single 

homogeneous population of failure times and the subscript i will 
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be dropped. Thus we will be considering testing certain hypoth- 

eses about the underlying probability distribution of a random 

sample of failure times X1, X2,..., XN. 

Let So be a specified survival function having continuous 
hazard function v,(t) = - !& Ln So(t) and emulative hazard 

function .6,(t) = -&n So(t). A test of whether So(t) is equal to 

the true survival function, S(t), for teT, is equivalently a test 

of the hypothesis HO:B(t) = B,(t) for all t&T. Formulation of 

such a test could be based upon a process which at time t is the 
statistic 

t n 
; d 1 IN(s) > ol d@,(s) - B(sl3. 

Observe that when N(t)>O, the statistic represents the difference 
between the hypothesized and estimated cumulative hazard functions 

at t weighted by y/u. In uncensored data, N is a measure of the 

amount of survival information available throughout the interval 
T. Integrals, unless otherwise specified, are Lebesque-Stieltjes. 

Effectively, the amount of information available in censored 

data to estimate the change in the survival or cumulative hazard 

function at time s is only a fraction C(s) of that available in 

uncensored data. In view of this fact, and in order to define a 

process which asymptotically, under Ho, will have a covariance 
function independent of the censoring distribution, we will 

replace N by NC^ (s-) and define the process 

BN ’ : ii CN? (~-13”~ IrNcs) > ol d@,(s) -g(s)3 :Olt<~3. 

Note for any function f(t) we define f(t-)=i-& f(s). The left 

hand limit of the estimator of C(s) is used to be consistent with 

the convention employed in breaking ties between deaths and 
censorships. 

To allow the investigator a degree of flexibility in defining 

, 

the class of alternatives to the null hypothesis against which 
greatest sensitivity will be obtained, we will consider test , 



-a- 

procedures based upon the processes BNa= {RNa(t):teTI, where a 

is a non-negative fixed real number and BNa(t) = 

5 
1 - ~~so(S)}a+t~(s-)}al~~(~-)}"2 IINcs) >Old &I {~,(s)-i(~)}. 
O2 

The role of the free parameter a or, more specifically, the role 

of the factor $ [~So(s)ja+i~(s-)Ial in determining sensitivity 
to specific class& of alternatives will be discussed after 

Theorems 3.1 and 3.2 are given; these theorems contain the basic 

results needed to formulate Kolmogorov-type goodness-of-fit test 
procedures. 

Theorem 3.1. Suppose conditions (2.1) and (2.2) hold, that v(u) 

is a continuous function on T, and that a is a fixed non-negative 

number. Then, under Ho, BNa => Ba, where 

Ba - {B'(t) = : {S(s)) 
a-- : l/2 

Cv(s)l dW(s):teT}, 
0 

and where the integrals are stochastic integrals in the quadratic 

mean with-respect to a standard Wiener process CW(s):s~OI. 

The proof of Theorem 3.1 follows from weak convergence 

results for stochastic integrals of square integrable martin- 

gales; an outline for this proof is given in section 6. 

It follows from Theorem 3.1 that Ba is a zero mean Gaussian 

process possessing continuous sample paths, independent incre- 
ments, and variance function 

o:(t) E var Ba(t) = : ci(s)12a-' v(s)ds=(2a-l)-1 [l-{S(t))2a-1] 
0 

if af1/2, with o:(t) = B(t) if a = l/2. 

Since g(r) is a strongly consistent estimator of B(r) 

(Aalen, 1976) and 5(-c) = emi(') is a strongly consistent estima- 

tor of S(T) (Fleming and Harrington, 1979), it follows under Ho 
that z:(r) is a strongly consistent estimator of oE(,), where 



-t 

. - 

-9- 

;:(T) = 'i [' I?(s-)la+$ {S,(S)}~]~ &s-)1-' d;(s). 
0 2 

Clearly Go(t) : [G~(T)]"~ is also a strongly consistent estima- 

to; of U,(T) : [c$T)l"2. In fact, with this choice of a(~), 

var {B$r)/^(r)} -1 whether or not the null hypothesis holds. 

We now define the Kolmogorov-type one-sided and two-sided 

goodness-of-fit test statistics respectively by 

and 
KN 

a f SUP O<t<T {Ga(d3-’ B;(t) 
-- 

r;(’ a - o:;yT f^(T)}-‘18;(t)/. N -- 
It follows by Theorem 3.1 and by the strong consistency of 

a(~, that,under HO,KNa and -so converge in distribution to 

K" : ,,:yR {cJa(T)}-' Be(t) and ? E Cafe, {oo(~)l-lIB~(t)I 
-- 

respectively. Since Ka has the same distribution as C:F& W(t), 
-- 

part a in Theorem 3.2 below follows from the result quoted in 

Karlin and Taylor (1975, page 346). Part b in Theorem 3.2 

follows from Feller (1971, page 343) after observing ? and 

C:~~,IW(t)l share the same distribution. 
-- 

Theorem 3.2. Under H,,, as N + =, 

(3.1) 

(3.2) 

(a) P(KNa (Y)+H(Y) 5 1 - 2 7 exp(-x2/2) 
&- y 

(b) P(ZNa zy)+Z(y) - $ Y dexp{-T2 (2k+l)2/8y2} 
k=O 2k+' 

3.2. The Role of a 
We begin our discussion of the role the free parameter a 

plays in determining sensitivity to specific classes of alterna- 

tives to HO by momentarily considering a property of the survival 

function. The differential equation satisfied by a survival dis- 

tribution and.its associated cumulative hazard function may be 

written as dS = -SdB. Thus small changes in S at time u may be 
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thought of as -S(u) times the small change in B at u. If instead 

we look at -Sad6 = Saw'dS, then small changes in S will be 
weighted by the factor Sam', causing changes in S when S is small 
to be emphasized when 02-4, and changes in S when S is large to 

be emphasized when a>l. 

To obtain a similar weighting of changes in the difference 
S-S,, it would be 

; isa-' + soa-' 1 

TO take advantage 

natural to examine the differential 

d(S-S ) = 1 iSa-' + S a-1 
0 2 o I [So@, -WI. (3.3) 

of the large sample behavior of integrals with 
t 

respect to the martingale 1; IIN(s),Ol dEBo(s)-^B(s)l:tcT}, we 

will approximate (3.3) by 

; Cia(s-)+Soa(s)l IIN(s)>Ol d@,(s) -ii(s),, 

where unknown functions are now replaced by their estimators. 

Hence, incorporating the estimate of the censoring distribution 
in the fashion described earlier, one is naturally led to statistics 

based on the empirical process BNa. 

In view of these observations, the statistic KNa has been 
designed so that if OAa<l, KNa tends to give greater weight to 

later rather than earlier changes in the survival difference, 
S(t) - So(t). Thus, for small values of a and in particular for 

the value a=O, the corresponding Kolmogorov-type goodness-of-fit 

test procedures are especially sensitive to those substantial 
departures from Ho which do not occur until late in time; that is 

at times t<-r such that S(t) is close to S(T). Hence, for 
example, these procedures could be useful in detecting long-term 

survival benefits of aggressive coronary heart disease treatments 

which induce moderate mortality initially. 

On the other hand, for a> 1, the corresponding KNa proced- 

ures give particularly heavy weight to earlier rather than later 
changes in the survival difference and in turn are particularly 

sensitive to substantial departures from Ho which occur early in 

I 
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time. This sensitivity is not diminished in situations in which 

the large survival differences disappear later in time. This 

type of alternative to HO in which large early survival differ- 

ences disappear later in time has been termed the acceleration 

alternative and has been given a great deal of attention in 

clinical trials assessing the carcinogenicity of certain drugs, 

(Transcripts of the Ad Hoc Statistical Meeting, June 11, 1979, of 

the Working Group to Evaluate the Carcinogenicity of F D and C Red 

Dye #40. On file, Hearing Clerk, Food and Drug Administration, 
8 

Washington, D.C.) 

A careful analytical study of the sensitivity, i.e. the 

power, of these newly proposed procedures under various specific 

alternatives and censoring distributions would obviously be com- 

plex and difficult. The proof of Theorem 3.1 given in section 6 

shows that we may write our test statistic for a one-sided test 

as 

KNU = 
sup f+,'(t) 

095~ +) 
= o:Ff!T IZa(~)lel ILNa(t) +rh'(t)I 

- - 

where 

rNa(t) = j JN i [ISo(u)~a+I~(u-)Ia] t(u-)"' 
0 
. I[N(u) > ol ho(u) -v(u)) d”, 

and where LNa(t) is a stochastic integral with respect to a 

martingale. When large values of the test statistic are observed 

one would reject the null hypothesis HD: S(t) = So(t) for teT, in 

favor of the alternative that S(t)>So(t) over some interval. 

The proof of Theorem 3.1 shows that IL~(t)/$(?):teTI always con- 

verges weakly to a mean zero independent increment Gaussian 

process with variance function ZE(t)/Zz(T), where 

((s) = 7 ,1 [c+l)la 
0 2 

+ ISo(u)3”l12 WU)~-~ v(u) du, (3.4) 

and where C:(s) = o:(s) whenever either Ho holds or a = 0. While 
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rNa(t) 5 0 under Ho, it is clear that lim rNa(t) = m a.s. when- 
N- 

ever V(U) and V,(U) do not agree on a subset of [O,t] with 

positive Lebesque measure. Heuristically we can say then that, 

when a distribution from the alternative class holds, the test 

statistic in large samples is formulated using a Gaussian process 

with variance function $(t)/zt(-r) and with non-constant mean 

value function ra(t)/Za(r), where C,(T) = [Zi(r)lT'2, and where 

5 
ra(t)= d I- [{sob-dla+ {s(U)j’] c(U)1’2 {v,(U)-v(U)! dU. 

O2 

Clearly, the larger the mean value function, the more likely it 

is that the test statistic will lie in the rejection region. It 

is imnediately evident that the mean value functions form an 

increasing sequence in N and are larger for large positive values 

of v,(u)-v(u) on the interval T = [O,T]. 

The role of a in determining a procedure's sensitivity in 

detecting early or late differences has already been indicated. 

However, it should be added that the role of the censorship dis- 

tribution in the power of these test procedures is also very 

important and is precisely shown in the expression of the mean 

value function, ra(t)/Ea(T). Clearly even if one attempts to 

obtain sensitivity to detect substantial differences occurring 

later in time, little power will be realized if censorship at 

that time is heavy. This can be seen mathematically by observ- 

ing in the formula for ra(t) that the difference in hazard 

functions is weighted by the product of $ [ESo(u)]a+{S(u)]a] 

and C(U)"~. 

3.3. Another Proposed Kolmogorov-Type Procedure 

In comparison to the classical Kolmogorov-Smirnov procedures 

in uncensored data, it should be noted that the procedure using 

the test statistic Ki bases rejection of Ho precisely on whether 

differences between the cumulative hazard functions, rather than 

the survival functions, exceed a certain quantity at any point in 

time. This basic idea was proposed earlier by Aalen (1976) who 



-13- 

. - 

. 

suggested use of the statistic 

Q,=,',;P,, QN(t)'OS<;P<T {;$r)j-1'2 ~'?4 : I 
o [N(s) '01 d@,(s) - ^B(sH 

-- - 

to test Ho, where G2(-c) is a strongly consistent estimator of Q 

0,2(T) = ; C(s)--’ S(s)-' dG(s). 
0 

The statistic Q, is essentially equivalent to Ki is uncensored 

data. However in censored data, unlike K/, Q, is formulated by 

taking the supremum over a process whose large sample covariance 
function under Ho is dependent upon the censoring distribution. 

Specifically, {Q,(t):O~t~~) => {Q(t):OszTl where the limiting 

process is a mean zero Gaussian process with independent incre- 
ments and variance function 02(t)/cr2(T), clearly dependent upon Q Q 
c(t) - 

It is of particular interest to compare the Kolmogorov-type 

goodness-of-fit statistics Ki and Q, when the alternative hypo- 

thesis holds. Using terminology of the previous sub-section, in 

large samples, Ki is formulated from approximately a Gaussian 

process with independent increments, having variance function 

+M#d 
t 

= ; S(s)-' dB(s) 
I 

5 S(s)-' df3s) 

and mean value function 

r'(t)/o,(T) = 44 4 C(S)"~ d@,(s) - B(s)1 6 S(s)-' dB(s)1"2. 
0 I 0 

inde- In comparison Q, is formulated from a Gaussian process with 

pendent increments, having variance function 

o~(t)/oq2(T) = ,t c(s)-’ S(s)-' dB(s) 
0 I 

; C(s)-' S(s)-1 d8(s 

and mean value function 

rQ(t)/cQ(T)=& ; d{B,(s)- B(s)) 
0 I 

1; C(s)-' S(s)-' dG(s)j1'2. 
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Careful inspection of the variance and mean value functions of 

both processes reveals that, unlike Ki, QN has the undesirable 

property that its probability of rejection of HQ based upon 

information up to time t systematically tends to zero when 

censorship of data after time t is increased. 

4. TWO SAMPLE PROCEDURES 

4.1. The Test Statistic and its Asymptotic Distribution 

Suppose now one has two independent samples of death and 
* 

censoring time random variables, (X,T, Y,l), . . . . (XTN , Y,N ) 
1 1 

and (X2ly Y21)1 . . . . (X2a2, Y2N2). Let si(t) = p(xij ,t), 

i = 1,2. One can formulate a class of procedures to test 

Ho:S,(t)= S*(t) (= S(t) unspecified) for t&T, which is similar to 

that proposed for the one sample goodness-of-fit situation. To 

define the appropriate test statistics and specify their asymp- 

totic distributions, we need some notation. Let 

“i, ,N2 
(t) = i H 

A A 

0 N1'N2 
('1 I[N,,(u) N2(u)>O] d"l(") - B2(U)1' 

and 

"i1 ,N2 
= {Ba 

N1'N2 
(t); O~t~Tl. 

"i, A2 
(t) is then entirely analogous to B:(t) and will be used to 

test the two sample null hypothesis in exactly the same manner as 

B:(t) was used in the one sample case. The next theorem contains 

the basic result needed to formulate these Smirnov-type two 

sample test procedures. 

Theorem 4.1. Suppose that conditions (2.1) and (2.2) hold for 
j = 1,2. Then, under Ho, B:,,,* -> B a as N, and N2 + m, so long 

as lim N1 jj--= A, O<X<=. 
N- 2 1 
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The proof o f the theorem, outlined in section 6, uses the 

multivariate version of Rebolledo's theorem, Theorem 3.5 of 

Rebolledo (1978). 

As in the one sample situation, before giving the test 

statistic, we need to estimate C?(T) z var{Ba(T)). Again relying 

essentially upon the strong consistency of the cumulative hazard 

function estimators, it follows that 

‘[N, b)N2bPOl 

and so(~) f 6: 

oz(-r) and Us 

,(r)y2 - . are strongly consistent estimators of 

respectively. In fact, with this choice of 

{+)} - ; IN,t,(s-)+ N2t2(s-)}-’ [; [{$(s-)}~ + {s,(s-)}a~~2. 

. 

za(r), varIBF; N 
1' 2 

(T)/ ia(~ whether or not the null 

hypothesis holds. We now define the Smirnov-type one-sided and 

two-sided two-sample test statistics respectively by 

“:, , N2 z ~~a(dl-l o;;T B;;1,N2(t) 

and 

i? = i; (T)j-l 
N, ,N2 - a 

Using the strong consistency property of sa(~) and the weak 

convergence result of Theorem 4.1, the large sample distributions 
of the newly proposed statistics are obtained by employing the , 

identical argument presented in the one-sample situation. This 

result is given in the lemma below. 

Lemma 4.1. Under HU:Sl(t) = S2(t) for t&T, as N1,N2 + m, 

PM 
Nl'N2 

5 Y) + H(Y) and PC% N 5 Y) + i(y), 
1’ 2 

where H(y) and G(y) were defined in (3.1) and (3.2) respectively. 

4.2. Computational Formulas 

Although the integral formulas provide the easiest way to 

formulate the newly proposed test statistics, they do not lend 
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/ Va(Tj) = 0.5 [expI-a&(Tj-)] + expI-a&(Tj-)]I. 

much insight into how the statistic might actually be calculated 

with a given set of data. We will now give the algorithm that 

can be used to calculate the one- and two-sided Smirnov-type 

two-sample tests based upon {$o(T*)]-' O:yyT* Bi ,N (t) and 

I~a(T*)l-l $T* '";, N2 (t)l where T*=~a~1Tij:Al(:ij)N2(Tij)>O]. 

(In general,oie might'set T' = min (r,T*) for some predetermined 

T, and use T' rather than T* hereafter. This would be necessary 

for asymptotic results to apply directly.) The algorithm reveals 

that the computation is more straightforward than one might have , 

anticipated, primarily due to the recursive structure of the 

calculation. 

Recall Ni(t) represents the number of individuals in sample i 

under observation at time t, prior to any deaths or censorships 

at time t,and CT.: . ,...,d] represents the d distinct times of 

death in the poo!!edJiimple . Let Zjc{l,2] indicate the sample in 

which the death at Tj occurred. 

(1) Define J = maxIj:Tj(T*]. 

For i=l,2, set gi(TO) = 0 and recursively calculate, for all 

j=l,...,J, 

and 

$(Tj-) = 

Ni-Ni (Tj)-1 

' (Ni-k)-l - ~i(Tj-1) 
k=O 

(4.1) 

(Observe $(Tj-) = g.(T. ) since the estimator ii as defined is 
1 J-1 

right continuous.) 

In (2)-(4), we calculate Ba (T.) for j = l,...,J. 
Nl>N2 3 

(2) For all j=l ,...,J calculate 

n(Tj) = [[N, expt-<(Tj-)]]-' + [N2 expI-~(Tj-)]]-1]-1'2. 

(3) For all j=l ,...,J calculate 

- 
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(4) Set U(T0) = 0 and recursively calculate, for all j=l,...,J, 

U(Tj) = U(Tj-l)+~(Tj)V,(Tj)[Il-(l-Zjl}{Nl(Tj)]-l 

-I'-l'-Zj II{N2(Tj)l 
-1 (4.2) 

1. 

In (5) and (6) we calculate sa(T*). 
(5) For j=l ,...,J and i=1,2, calculate 

Si(Tj)=teXPI$(Tj-)}I {l-li-Zji3* 

[Ni(Tj) Ni exp{-$(Tj-)]]-'. 

(6) Set ga(T*)= 1 5 I~~Tj)V~(Tj)]2{S1(Tj) +c2(Tj)]]1'2. 
j=l 

(7) Set Ka 
Nl*N2 

= max{O,{gu(T*)]-'U(Tj): j=l,...,J] 

(4.3) 

and set the two-sided statistic 

P 
N1'N2 

= maxI{~a(T*)]-llu~Tj)l: j=l,...,J). 

(8) Calculate the significance level for the one-sided test from 

the formula 

P = p(Ka Nl ,N2) = & KiyN exp[-x2/21 - 

1' 2 

Calculate the significance level for the two-sided test from 

the formula 

)=1-Q T d exp[-n2(2ktl)2,{8(p fT k,O 2k+l Nl'N2 
12H- 

Observe that the algorithm has been presented with the 

assumption that no ties exist between observed times of death. 

If some ties in death times do exist, the one and two 

sample procedures can be applied in that situation by simply 

replacing the term il-ii-ZjI]INi(Tj)]-1 in (4.1), (4.2) and (4.3) 

of the algorithm by the term 
Di (Tj)-1 

kzo lNi(Tj)-k]-' for i=1,2. 

This modification to accomodate ;ied death times is desirable due 

to its simplicity. However, the test statistic's distribution 



-18- 

was actually derived assuming no ties exist in death times. 

Thus, if the number of ties is very large, other more complex 

modifications might yield improved behavior. 

5. MONTE CARLO SIMULATIONS 

The asymptotic distributions of the newly proposed test 

procedures have been used in the construction of hypothesis tests 

of a given size. Therefore, Monte Carlo simulations were used to 

determine whether the true size of each of these test procedures, 

in small or moderate sample sizes and under varying amounts of l 

censorship, was accurately approximated by the nominal signifi- 

cance level based on this asymptotic distribution theory. The 

simulations were also used to confirm the conclusions reached 

earlier concerning the role of a in determining power. Nearly 

exact values of the power of Ki,,N2, for selected values of a, 

were calculated against some specific alternatives of particular 

interest. Attention in this section has been restricted to the 

two sample problem since this is where the greatest interest 

appears to be. 

5.1 Simulation Procedure 

In the simulations, eleven distinct configurations of sur- 

vival and censoring distributions were inspected, with each 

configuration including two survival distributions used to gener- 

ate the two samples of failure times, and a single censoring 

distribution used to generate the two samples of censoring times. 

Independent censoring and survival random variables were obtained 

by transforming uniformly distributed random variates produced 

with a linear congruential random number generator (Knuth, 1969). 

Each observation time was taken to be the minimum of a survival 

and a censoring random variable; that is, Tij =min (Xij, Yij) as 

indicated earlier. Equal sample sizes of N, = N2 = 20 and 

Nl 
= N2 = 50 were used. 

To investigate size, the two survival distributions were 

chosen to be equal. Various survival configurations in which the 
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null hypothesis failed to hold were then simulated with the 

intent of comparing, in these special cases, the power of the 

log-rank, the Gehan-Wilcoxon, and the Smirnov-type procedures 

'i, A2 
for a =.0,1,2,3 and 4. Most configurations chosen had 

survival differences which were particularly evident at one point 

in time since it was this type of departure from HO that provided 

the basic motivation for the formulation of the K" 
N1 'N2 

procedures. 

Five hundred pairs of samples (one thousand pairs of samples 

when evaluating size) were generated for each selected configura- ' 

tion of survival and censoring distributions for the two 

populations and for each sample size. The proportions of samples 

in which each one-sided test procedure under consideration 

rejected HO at the a = 0.05 significance level were calculated. 

5.2 Results 

Results pertaining to the evaluation of size of the g 
VN2 

procedures are presented in Table I. Selected configurations of 

censoring distributions and equal exponential survival distribu- 

tions were inspected which yielded lightly, moderately or heavily 

censored data; specifically, the expected percents censored were 

13X, 25X, 37%, 47%, 61% or 68%. All Smirnov-type procedures pre- 

served the nominal size in each situation, with the procedures 

being somewhat more conservative in the smaller sample size and 
0 

with the KNl,N2 procedure being-noticeably more conservative than 

others.. 

Table II contains the results obtained from the Monte Carlo 

simulations employed to evaluate the power of the newly proposed 

K* 
N1BN2 

procedures. Figure 1 presents the graphs of the five 

configurations inspected in the table. 

The first configuration (see Figure l(a)) presents a 

"proportional hazards" or "Lehmann" alternative. Specifically, 

two exponential distributions representing a doubling in median 

survival were generated. This configuration was chosen to compare 
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the behavior of the Smirnov-type procedures to that of the log- 

rank in the situation in which the latter test procedure would be 

expected to have its greatest relative sensitivity (see Peto and 

Peto (1972)). Table II reveals the log-rank procedure is the most 

sensitive in this situation but its gain in power is not large 

over that of K' 
. Nl ,N2' 

the most powerful of the Kil,N2 procedures at 

this alternative for the values of a examined. 

TABLE I SIZE 

Monte Carlo Estimates of the Sizes of the Gehan-Wilcoxon, 

Log-rank and Kil,N2 (a = 0,1,2,3 & 4) One-Sided Test 

Procedures of HO:Sl =S2 vs. H,:Sl <S2 (1000 simulations) 

Expected Snirnov-type, Ic; 

5, = s2 c, = c2 /eys;fe; 
lSNZ Gehan- Log- 

N1iN2 a=0 a=1 a=2 a=3 a=4 Wilcoxon rank 

20 .029 .029 -035 .038 .047 .042 .c43 
1x2* 'At* 13.5% 50 .028 .039 .W2 .046 .051 .047 .046 

c *** 25.4X :: .020 .033 -037 .042 .042 .056 .045 
B .036 .048 .051 .047 .040 .054 .050 

CA 
36.8% 20 .033 .033 .033 .033 .038 .058 .060 

x=1 50 .035 .035 .034 .035 .033 .033 .040 

cB 47.4% 20 50 .023 .035 .034 .043 .035 .045 .030 .045 .033 .036 .048 .050 .049 .054 

cA 60.7% :: 
.036 .042 .043 .044 .042 .061 .064 

I-0.5 .W2 .040 .036 .038 .038 .046 .049 

cB 67.9% :i .030 .030 .031 .032 .033 .033 .035 .034 .033 .035 .052 .038 .O46 .036 

* X denotes the constant hazard function of Si, an 
exponential distribution. 

** CA is defined by: C,(t)=1 for 099, and CA(t) =0 for t>l. 

** CB is defined by: C,(t)=l-(.4)t for O<t<l, and -- 

CB(t)=O for t>l. 

- 
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The second and third configurations (see Figures l(b) and 

l(c)) present departures from the null hypothesis in which 

substantial differences existing between survival distributions 

later in time fail to exist early in time. As would be antici- 

pated, the log-rank has marginally acceptable power against these 

alternatives, far better than the unacceptable power of the Gehan- 

Wilcoxon procedure. In turn, however, the procedure K" 
Nl'N2 

has 

power clearly better than that of the log-rank test. The power of 

the q W procedures to detect these later differences depends 
1' 2 s 

dramatically upon the choice of a, clearly confirming previous 

qualitative conclusions that ability to detect departures from Ho 

which occur later in time increases as a decreases. 

In the fourth configuration (see Figure l(d)), large differ- 

ences exist between survival curves over the middle range of the 

survival distribution although S,=S2 for both small t and large 

ti The last configuration (see Figure l(e)) presents the situa- 

tion in which large early differences between survival curves 

disappear somewhat later in time. From the formulation of their 

test statistics, we would anticipate the log-rank procedure to 

have unacceptable sensitivity to these departures, while the 

Gehan-Wilcoxon should have marginally acceptable power. This has 

been confirmed in the simulations. Of all procedures inspected, 

4 ,N 
and K2 

Nl'N2 
were found to have the best power to detect the 

la~ge2"middle" difference in Figure l(d). Simulations with the 

last configuration clearly reveal that the Ko 
Nl'N2 

procedures for 

a > 2 have excellent sensitivity in detecting large early survival 

differences which disappear somewhat later in time. Further, the 

simulations confirm earlier qualitative conclusions that this 

sensitivity to early departures from Ho is increased by choosing 

%, A2 
procedures with larger a values. 
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TABLE II POWER 

Monte Carlo Estimates of the Power of the Gehan-Wilcoxon, 

Log-rank and $ 
YN2 

(a = 0,1,2,3 & 4) One-Sided Test 

Procedures of HO:S, =S2 vs. H,:S, <S2 (500 simulations)* 

Smimov-type $ 
1 *N2 

5 s2 N =N Gehan- Log- 
1 2 a=0 a=1 a=2 a=3 a=4 Wilcoxon rank 

. 
a, =2:fX2= l:tc(O,-) 20 .392 .446 .426 .372 -354 .47a .522 

Fig. la "Proportional Hazards" 50 .752 .a32 .784 .700 .61a .a20 .a72 

W(4,1)- W(2.0.5) 20 .450 .304 .154 .068 .034 .130 .358 

Fig. lb "Late Difference" 50 .932 .710 .2ao .090 .014 .laa .692 

a1=2, x2=2:tc(0,d) 
+=4. a2=.4:k(.4,-) 

Fig. lc "Late Difference" 

20 .552 .364 -196 .lOO .054 .14a .416 
50 .94a .724 .34a .192 .09a .254 .6aa 

+=2. X2=2:to(O..l) 

x1=3. X2=.75:tc(.l..4) 20 .072 .280 .294 .250 .194 .274 .i7a 

x1= .75, x2= 3:k(.4..7) 

Al-l, X2=1:ts(.7,-) 50 .3D4 .674 .666 .530 .432 .504 -330 

Fig. id "Middle Difference" 

+=3. a*= .75:tc(0..2) 
+=.75, x2= 3:tc(.2..4) 20 .052 .234 .402 .498 -534 .322 .I62 

a =l. A 2=1:tE(.4.-) 
1 

50 .120 .646 .a42 .a94 .a96 .522 .214 

Fig. le "Early Difference" 

* Censoring distribution in every case is CB, defined in 

Table I. 

** Xi denotes the hazard function of Si, a piecewise 

exponential distribution. 

*** W(X,y) denotes a Weibull distribution having 

S(t) = expC-(Xt)Y1. 
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FIG 1. Semi-log plots of survival distributions simulated when 

evaluating power. Survival distributions are either 

piecewise exponentials with constant hazard X over 

intervals or are Weibull distributions, W(X,y), having 
survival function S(t) = exp{-(Xt)Y). 
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6. ASYMPTOTIC DISTRIBUTION RESULTS 

6.1 One Sample Test Statistics 

As mentioned in the text, the proof of Theorem 3.1 and of its 

multivariate analogue, Theorem 4.1, relies on weak convergence 

results for stochastic integrals of martingales related to 

counting processes. These results were first published by Aalen 

(1977); Rebolledo (1978) has shown that some of Aalen's regularity 

conditions may be simplified considerably. Since the proofs of 

Theorems 3.1 and 4.1 do not use techniques substantially different , 

from those which have appeared elsewhere in the literature (cf. 

section 3 in Aalen (1977)), we will only outline the major steps 

in the proof here. We will first indicate how Theorem 3.1 is 

proved. 

In order to use the results of Aalen and Rebolledo, we need 

to show that B:(t) = L:(t) + r;(t), where L;(t) may be written as . 
a stochastic integral with respect to a counting process based 

martingale K(t), and where,under Ho, r-f;(t) is a remainder term 

that satisfies r;(t) => 0 as N + m. Lemma 6.1 below is the first 

step in the construction of x(t). Since this lemma provides a 

_ connection between the martingale based approach to problems of 

this type and the classical notion of the identifiability of 

competing risks, the proof of Lemna 6.1 is given here. 

Lenma 6.1. Let X and Y be random variables, defined on an under- 

lying probability space (Q,F,P), denoting the death and censoring 

times for a given individual. Let 

To = min (X,Y); 

ND(t) = ‘[T&t, X<u]; 

and 
NC(t) = ‘[T&t, Y<X]; 

Pt = (3 (ND(u), NC(u), OLult), oa-3, __ 

where o(A) denotes the a-subalgebra generated by the family of 

random variables A. Then the stochastic process 
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M(t) = ND(t) -; v(u) IIT ul du, teT, 
0 01 

is a square integrable martingale with respect to Ft if and only 

if condition (2.1) holds. 

Proof: M(t) is obviously adapted to Ft, and is clearly square 

integrable. To see the martingale property, note that 

t+a 
E{M(t+a)jFtl = EIND(t+a) - / u(u) 

0 
IIT >,,, 

o- 
dulF$ 

To complete the proof, we need only show 

EIND(t+a)- ND(t)17ti=t? w(u) P(T&uIF~) du a.s. . (6.1) 
t 

Let A = CU: ND(t) + NC(t) = 11. Then A E Ft and both sides of 

(6.1) are zero on A. 

Now examine Acc~t, where AC is the complement of the event 

A . On AC N'(t+a)-ND(t)=1 or 0. Thus , 

E{ND(t+a)- ND(t)(ACb = P{ND(t+a)-ND(t) = lIAcl 

= P(t<XIt+a, X(YIA') 

= P(t<Xzt+a, XcY)/P(X>t, Y>t). 

On AC, the right hand side of (6.1) is 

t+a 
/ v(u) P(T&TO>t) du 
t 

= {P(TO>t)]-’ ‘7 u(u) P(T&u) du. 
t 

Since (w: To>tl = {w: X>t, Y>t} we need only show that 

tta 
P(t<XLt+a, Xc-Y) = / v(u) P(T$u) du. (6.2) 

t 

Suppose f(u) = $ F(u). The left hand side of (6.2) may be 

written as 
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t+a 
/ P(Y>u 
t - 

* 

t. 

., 

while the right hand side is 

t+a 
I [f(u)/U-F(u) 
t 

tta 

I] P(XLU, YLU) du 

IX= u)f(u) du, 

= / f(u) P(Y~ulXzu) du. 
t 

Thus the equality will hold for all a if and only if 

P(YLlJlX~U) = P(Y~u[x=u). (6.3) ' 

But 

P(WlX = u) = -wu)l-’ $- lTNl ,t2)ltl=t2=” 
1 

and P(Y~ulX~u) = i~(u,u) IS(u))-'. Thus equation (6.3) holds if 

and only if 

Lrl(t 
f u) = atl 

t )' 

* 

1' 2 \t1=t2=u 

su du ,u) 
, 

which is precisely condition (2.1). 

We remark here that an application of the Doob-Meyer decompo- 

sition theorem for submartingales of the class D (see Meyer 

1966, chap. VII, sec. l-4) can be used to show that if the family 

Ft is generated by just the process ND(t), then M(t) is a martin- 

gale with respect to Ft regardless of the dependence relationship 

between X and Y. Both Aalen (1978) and Lipster and Shiryayev 

(1978, chap. 18) give excellent surnnaries of this aspect of the 

structure of counting processes. Because of some technical 

requirements that will arise later on, however, we require that 

the u-fields Ft be rich enough to allow the adaptability of NC(t). 

Aa'len and Johansen (1978) have given a different method for pre- 

serving the martingale property of M(t) with enlarged u-fields 

which has a more measure theoretic flavor. 

Suppose now that the stochastic process H(t) is given by 

t 
Jf(t) = 8(t)-, v(u) N(u) du , 

0 
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for tcT, where $(t) is the number of observed deaths in the 

sample up to and including time t, and N(u) is the size of the 
N 

risk set at time u; that is N(u) = C I [Tjzu]' Using 'light j=l 

variants of the arguments in Aalen (1978), one may show that 

E(t), tcT, is a square integrable martingale with respect to the 

family of a-subalgebras P, 

QJ 

= Jkl F:, where 

; Owt). 
= '('[T~u, Xjlujl' I[Tjlu, Yj'XjI -- 

By letting 

H:(u) = i [{S,(u)}" t {$(u')>~] f~?(u-)N]"~, it is not hard to 
8 

show, after some algebra, that B:(t) = L:(t) + r:(t), where 

L;(t) = - : Ha(u) IN(u) IIN(u) > ol 
0 N 

d E(u) 

and t 
r;(t) = ; H;(u) l[N(u)>O] (v,(u) -'J(u)] du. 

(Note that we always take O/O to be 0.) Since the conditions of 

Proposition 3 of Dol&ans-Dade and Meyer (1970) are satisfied, the 

Stieltjes integral L:(t) may be identified with the martingale 

stochastic integral with respect to H(t). 

Let g(u) = ; [IS(u)lU f Iso(u)~al is(u)9 I”(U)P2 where 

S(u) is the true underlying survival function for Xj. Theorem 3.4 

in Rebolledo may now be applied to the process L:(t) to show that 

{LF;(t):tcT] => ; g(u) dW(u):tcT 
6 1 

as N+m. 

The details needed to check the sufficient conditions given by 

Rebelled0 in his Theorem 3.4 can be constructed by using modifi- 

cations of the arguments in Aalen (1977). Furthermore, it is 

clear that under Ho, rFf(t) E 0. 
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6.2 Two-Sample Test Statistics 

Many of the details involved in the proof of Theorem 4.1 are 

nearly identical to those required for the proof of Theorem 3.1. 

Using Lemma 6.1, it is easy to construct a product probability 

space (5, F, n and an increasing family of a-subalgebras Ft so 

that the stochastic processes 
t 

i,(t) = q(t) - / N (u) v,(u) du 
0 ' 

and 

jjr2(t) = q(t) - : N (u) v,(u) du 
0 2 

are orthogonal square integrable martingales with respect to Ft. 

A calculation similar to that required in Theorem 3.1 shows that 

"il ,N2 
it) = L:,(t) - Li2tt) + r: N ct) 

1' 2 
where 

La(t) = tlH 
Nl 0 Nl'N2 

(u) Nl-~(u) IiN1 

La (t) = : H 
-1 

N2 0 Nl'N2 
(u) N2 (u) I[$ 

and 

)N2(u) > 0] d i;i,(‘)’ (u 

(U )N2b4 ‘01 d ~2b,, 

‘il ,N2 
(t) = : H 

o Nl,NztU) I tN, (u)N2(u) ‘01 
{vi(u)-v2(u)l du. 

Under Ho, ril ,N2 (t) = 0, so it suffices to study the 

asymptotic behavior of the processes Li (t). Suppose 

g:(u) = 

)ii-l 
1 

'3-i ('1 
A c,(lJ)tc,(u) r; I~~~(u)~a+IS2(U)~~l12 ISid Vi(S) 

and that WI(t) and W2(t) are independent standard Wiener processes 

on [O,T]. Using a method nearly identical to that which yields 

the weak convergence of L:(t) in the proof of Theorem 3.1, and the 

orthogonality of Ml(t) and K2(t) (and hence the orthogonality of 

La (t) and La (t)) one can show that 
Nl N2 
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. 

-+ 
= {(Li (t), Li (t)); OLtLT1 --3 ? in D2[0,tl 

1 2 

where 

> = I(: g (u) dW,(u), : 9 (u) dW2(u) 
0 ’ 0 2 

The theorem now follows by calculating the 

of Li (t)-L{ (t) in the obvious way. 
1 2 
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