
Computing the Cox Model for Case Cohort

Designs

Terry M. Therneau

Hongzhe Li

Technical Report Number 62

June 1998

Technical Report Series

Section of Biostatistics

Mayo Clinic, Rochester, Minnesota



Abstract

Prentice [9] proposed a case-cohort design as an e�cient sub-

sampling mechanism for survival studies. Several other authors

have expanded on these ideas to create a family of related sam-

pling plans, along with estimators for the covariate e�ects. We

describe how to obtain the proposed parameter estimates and

their variance estimates using standard software packages, with

SAS and S-Plus as particular examples.

1 Introduction

Prentice [9] proposed a case-cohort design for large survey stud-

ies such as the Women's Health Study, where the population

size makes it infeasible to collect data on all of the cases. If

there is a concurrent registry which can be used to identify all

of the subjects who experience an event, then it is possible to

collect covariate data on only a subcohort of the subjects SC,

randomly sampled from the population at large, and (perhaps

at a later date) augment the sample with all those subjects who

experience an event. Self and Prentice [12] derived an appropri-

ate parameter estimate �̂ for the design along with a variance

estimator V , and proved results on their asymptotic distribu-

tion. The proposed variance estimate is algebraically complex,

however, and other simpler estimates have been proposed. Lin

and Ying [8] discussed Cox regression with incomplete covariate

measurements and treated the case-cohort design as a special

case of their general results. Barlow [1] gave a robust variance

estimate based on the approximate jackknife; he also uses a sur-

vey sampling approach to allow for more complicated sampling
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mechanisms. Binder [2] has given general results for Cox pro-

portional hazards models and survey sampling designs.

In this paper, we describe how to obtain the proposed param-

eter estimates and their variance estimates using any propor-

tional hazards regression program that support an o�set state-

ment, dfbeta residuals, and the (start, stop] notation to describe

intervals of time at risk. Case weights, if supported by the pack-

age, can be used in place of the o�set command. The SAS phreg

procedure supports the �rst three of these (but only integer case

weights), for instance, and the coxph function of S-Plus has all

four options. For the Self and Prentice [12] estimates only the

�rst two are needed. This translation to a common form, i.e.

the computer code, reveals that the di�erent variance estimates

are actually closely related.

2 The case-cohort design

To �x notation, let nc be the size of the full cohort C, nsc be the

size of the subcohort SC, and d the size of the set E of subjects

with an event. By de�nition, all of the subjects in E are in C.

In the original example of Prentice [9], the subcohort SC was

chosen before all of the events were observed, and may contain

a portion of the subjects in E.

As another example, consider the analysis of very large data

sets. Deng, Quigley and Van Order [4] discuss a data set con-

taining 1,489,372 observations on single family mortgage loans

issued from 1976 to 1983 and purchased by the Federal Home

Loan Mortgage Corporation. Data on the outcome of the loans

was current through 1992, at which point somewhat less than

1% of the loans have defaulted. The authors point out that the
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computational burden of a Cox model can be daunting, and sug-

gest an alternative discrete time model for this reason. Instead,

a case-cohort analysis could be done using a random sample of

10{20,000 of the loans, augmented with the set of defaults.

We will use the now-familiar counting process notation to de-

scribe a Cox model: Ni(t) is the per subject counting process,

which equals the number of observed events for that subject up

to and including time t, with N �
P
Ni. The Yi(t) process for

a subject is 1 when the subject is at risk and under observation,

and 0 otherwise. Zi(t) is the vector of possibly time-dependent

covariates for the subject, and ri(t) � expf�0Zi(t)g is the sub-

ject's risk score at time t.

If data from the full cohort were used in the analysis, then

an estimate of � would be based on the usual Cox model score

equation

U(�; t) =
ncX
i=1

Z t

0
fZi(t)� �Z(�; t)gdNi(t) ; (1)

where �Z is the weighted mean

�Z(�; t) =

Pnc

i=1 Yi(t)ri(�; t)Zi(t)Pnc

i=1 Yi(t)ri(�; t)
:

The kernel of the score equation is the term Zi(t)� �Z(�; t), which

compares the covariate vector of the subject with an event at

time t to the weighted average covariate vector at that time in

the population, where the weights are the per-subject risks ri(t).

For a case-cohort method of sampling, some modi�cation of the

equation is obviously required. If, as expected, certain covariate

values are associated with a higher risk of an event, then an

average over all subjects in the data sample SC [ E will be a

biased estimate of �Z for the cohort.
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Two methods for correcting this immediately present them-

selves. The �rst is to compute �Z only over the random subcohort

SC, that is use

�ZSC(�; t) =

P
i2SC Yi(t)ri(�; t)Zi(t)P

i2SC Yi(t)ri(�; t)
: (2)

This estimate is proposed by Self and Prentice [12]. The original

proposal of Prentice [9] was nearly identical; it included one

more observation | the event occurring at time t | in the

mean, based on a binomial argument. If the subcohort size nsc

is large this extra observation will have only a minimal impact

on the estimate.

Another option is to treat the data as the results of a weighted

random sample, as in survey methods. Barlow [1] uses this ap-

proach for more general designs than the original case-cohort,

these include among others the augmented case cohort design,

where the subcohort SC is enriched part way through a study.

Let nc(t) and nsc(t) be the numbers of cohort and subcohort

subjects which are at risk at time t. The subject with an event

is in the sampled risk set with probability 1, but each of the

other subjects with probability p(t) = nsc(t)=nc(t). Then with

sampling weights wi(t) = 1=p(t) for the subcohort, 1 for the

event at time t and 0 for the other (unsampled) subjects the

weighted mean

�Zw(�; t) =

Pnc

i=1 Yi(t)wi(t)ri(�; t)Zi(t)Pnc

i=1 Yi(t)wi(t)ri(�; t)
(3)

will also be a consistent estimate of �Z from the full cohort.

Clearly, both the Self and Prentice [12] and Barlow [1] esti-

mators will converge to the true � in large samples, since both

use a consistent estimate of �Z. If p(t) is constant over time,

then the two proposals are very similar, and di�er only in how
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much weight is given to the actual event at time t in computing

the weighted mean at t. Below we will see that the variance

estimates for these approaches, though quite di�erent on the

surface, are actually closely related as well.

2.1 Self and Prentice estimator

The Self and Prentice estimate of �̂ can be computed fairly

easily, using any Cox model program that allows for o�set terms.

In particular, let x be a constructed variable which is equal to 0

for subjects in the random subcohort SC and takes some large

negative value, -100 say, for the subjects who have died. If there

are subjects who are both in SC and have died, then enter them

into the data set as two separate observations, one with x = 0

and status = censored and the other with x = �100 and status

= event. Now �t the model with offset(x) as a term on the

right hand side of the model. Observations which are not part of

the subcohort SC, although formally a part of the estimation of

�Z, do not in actuality a�ect the result since they have a relative

weight of exp(�100) < 10�40 as compared to the SC subjects

when computing the mean �Z. (Do not set x to too large a

number, or the computer's exp function may fail.) Below is a

sample fragment of SAS code that illustrates the method. The

variable subco is assumed to be 1 for observations from the

subcohort, status contains the outcome indicator, and x1, x2

are the covariates of interest.

data temp; set mydata;

if (status=1) then do;

dummy = -100;

output;
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end;

if (subco=1) then do;

dummy = 0;

status= 0;

output;

end;

proc phreg data=temp;

model time * status(0) = x1 x2;

offset dummy;

Assume that we have computed the Self and Prentice [12] es-

timate by using a standard Cox model program with an o�set, as

per above. Because of the oversampling of cases with an event,

the usual estimate of variance will overestimate the precision

of �̂. Self and Prentice proposed an asymptotically consistent

estimate of var(�̂), which has been criticized as overly complex

for practical use [8]. However, as shown in the appendix it also

can be calculated by standard packages as

V = I�1 + (1� �)D0

SCDSC

where DSC is a subset of the matrix of dfbeta residuals that

contains only those rows for the subcohort SC, and � = nsc=nc

is the proportion of cases sampled. For those computer pack-

ages which return dfbeta residuals, this represents a very simple

calculation to correct the \standard" variance estimate I�1 re-

turned by the Cox model program. Here is SAS code to compute

and print the additional term; it adds two lines to the phreg call

found above.

proc phreg data=temp;

model time * status(0) = x1 x2;
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offset dummy;

output out=temp2 dfbeta=dx1 dx2;

id subco; *retains "subco" in output data;

data temp3; set temp2;

if (subco=1);

proc iml;

use temp3;

read all var dx1 dx2 into d;

v = d' *d;

print , v;

Below is the S-Plus code for the same hypothetical data set

containing the variables time, status (1=event, 0=censored),

subco (1=subcohort), and covariates of interest x1and x2. It

makes use of the fact that a Cox model object can contain both

a var and naive.var component, and both are displayed in the

standard printout.

# build the data set

temp1 <- data.frame(mydata[status==1, ], dummy= -100,

group=1)

temp2 <- data.frame(mydata[subco==1 , ], dummy= 0,

group=0)

newdata <- rbind(temp1, temp2)

#fit the model

fit <- coxph(Surv(time, group) ~ x1 + x2 + offset(dummy),

data=newdata)
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# Fix the variance

dfbeta <- resid(fit, type='dfbeta')

d2 <- dfbeta[newdata$subco==1,]

fit$naive.var <- fit$var

fit$var <- fit$var + (1-alpha)* t(d2)%*% d2

print(fit)

Even more interesting than the computational simpli�cation

that was gained from rewriting the Self and Prentice [12] esti-

mate in this new form, is the further insight that this form gives

into the meaning of the estimate. Let �p be the true coe�cient

for the (in�nite) population at large, �̂c the estimate for the co-

hort, if data were collected on all of the subjects therein, and

�̂sc the value for the actual study as conducted. The �rst term

in the Self and Prentice variance, I�1, is an estimate of var(�̂c),

the variance we would have gotten if all of the subjects in C had

been used in the computation. The second term is an estimate

of the �nite sample contribution var(�̂scjcohort).

For the �rst term, note that both the score equation and

the information matrix for a Cox model are sums, with one

term per observed event. Each term is the estimated variance

of the covariate vector X at that point in time and is not (other

than accuracy) a function of the sample size at that time point.

Since SC is a random sample, the subcohort computation based

on SC is term by term a consistent estimate of the computa-

tion based on the full sample C. To see that the second term

is an estimate of var(�̂scjcohort), consider the matrix D of df-

beta residuals from a �t to the full cohort C. Assume that in

computing this �t, subjects who experience an event are again

represented as two rows of data with o�set and status variables
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as in the examples above. The matrix D can be divided into

three sets of rows: the events, the inuence for the subcohort

SC (no deaths), and the inuence for SC. We make use of the

following three algebraic properties of D.

1. The column sums of D are 0 at �̂. (The column sums are

the Newton-Raphson step for the next iteration of the com-

puting algorithm [7]. Since the algorithm has converged,

the next update step must be 0.)

2. The column sums of DE, the rows corresponding to the

events, are zero as well.

3. The ith row of D is an estimate of the change in �̂ that

would occur if observation i were removed (the motivating

de�nition of D [3]). The approximate change in �̂ from re-

moving a group of observations is a sum of the appropriate

rows of D.

Then

�̂sc � �̂c + 10D �sc

= �̂c � 10Dsc (4)

where SC are the rows not in SC or E, which are the obser-

vations that are \removed" when moving from �̂c to �̂sc. Thus

(�̂sc � �̂c) is a sum from a �nite sample of rows with a known

mean of 0, and the standard �nite sample variance estimate is

var(�̂sc � �̂c) � (1� �)D0

SCDSC :

This connection suggests ways in which the Self and Prentice

estimate might be extended to more complex designs.
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2.2 Lin and Ying's Estimate

Lin and Ying [8] give estimating equations for a Cox model

with missing covariates. They treat the case-cohort design as

a special case of their method, and show that their proposed

estimates of �Z and �̂ are identical to those of Self and Prentice

in this case.

As an estimate of the covariance matrix they propose

V = I�1(
X

i2SC[E

cW 0

i
cWi)I

�1 :

Noting that in their notation the case-cohort design corresponds

to Hi = 1, H0i = Ii2SC , their de�nition of Wi (equation 6) can

be rewritten as

cWi(�) =

Z ti

0
fZi(s)� �Z(�; s)g fdNi(s)�

Yi(s)ri(s)P
j2SC Yj(s)rj(s)

dN(s)g ;

from which we see that the Wi are the score residuals.

The variance estimate is thus V = D0D where D is the

matrix of dfbeta residuals. This is precisely the robust variance

estimator for a Cox model whose properties are explored by Lin

and Wei [5], and which was derived earlier as an in�nitesimal

jackknife estimate by Reid and Cr�epeau [10].

In computing the estimate, however, note that we have to

\undo" part of the data setup. Subjects in the subcohort SC

who later have an event were broken into two synthetic obser-

vations (rows) in the data set, and will have two rows in D as

well, corresponding to the per observation leverage. The two

rows in D for such a subject must be added together after the

�t to get a single per subject dfbeta matrix eD, before the matrix

product eD0 eD is formed. In the S-Plus package this is particu-

larly easy. Assume that the data set of our prior example also
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contained a variable id which is unique for each subject. Then,

using the same data setup as the earlier example, the following

will produce a model with the Lin and Ying variance:

fit <- coxph(Surv(time, status) � x1 + x2 + x3

+ offset(dummy) + cluster(id), data=newdata)

The cluster directive automatically performs the grouped jack-

knife variance, adds that variance to the standard printout, and

uses it as the basis for the z-statistics �=se(�).

The computation in SAS is longer but also straightforward.

Example 23.8 in the SAS documentation of the phreg proce-

dure [11] shows the necessary code for computing the collapsed

D matrix and subsequent robust variance eD0 eD, for a di�erent

case (multiple events per subject) where a given subject may be

represented by multiple rows.

2.3 Barlow's Estimate

Barlow [1] explicitly proposes the use of D0D as a variance esti-

mate for case-cohort studies, derives the estimator in a natural

way, and notes its relationship to the work of Reid and Cr�epeau

[10] and of Lin and Wei [5]. More importantly, he shows that

the jackknife motivation for the estimate allows it to be used in

more complex sampling schemes for which the calculation of an

asymptotic information matrix estimate would be daunting.

For a general design he proposed a weighted mean with

weights

wi(t) =

8<: nc(t)=nsc(t) if i 2 SC(t)

1 if i 2 E(t)

where nc(t) and nsc(t) are the number of subjects in the cohort

and subcohort at time t, respectively. A subject who is in both
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SC(t) and E(t) is given a weight of 1. We then use the weighted

estimator �Zs.

For the simple case-cohort design discussed thus far, E(t)

contains the subject with an event at t and no one else, but it

may be more general. Barlow gives for an example a study which

included a random cohort of females along with all subjects who

had a diagnosis of breast cancer, and whose endpoint was death

due to breast cancer. In this case a subject would enter E(t) at

diagnosis and leave it at death.

Both SAS and S-Plus return unweighted residuals, i.e. the

weighted sum of the residuals w0D will equal zero. With case

weights added to the model, the jackknife estimate of variance

is D0W 2D whereW is a diagonal matrix of the weights. (Giving

every observation a weight of 2, for instance, will not change the

estimated variance.) For the time-varying weights suggested

above, each subject would be represented by multiple rows of

data, one row for each event time for which they were at risk,

the per-subject leverage matrix eD is formed by summing rows

of WD and the variance is eD0 eD.

We would suggest one change from the weights proposed by

Barlow [1], i.e., a subject in SC(t) should retain their weight

of nc(t)=nsc(t) when (and if) they become a member of E(t),

instead of being converted to a weight of 1. The primary reason

for this is that weights as proposed by Barlow are not a pre-

dictable process, i.e., they are not a function of the covariates

and risk set just before an event occurs. Thus the data set used

to �t his model is somewhat contrived. A subject in SC with an

event must have a change of weight at the time of his/her event,

without prior warning. Such a subject's last interval of time

must be set to (ti � �, ti], ti being their event time and � some
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small number, with status=event and case weight of 1. (Neither

SAS nor S-Plus accept intervals of length zero, so it is necessary

to make the interval of some small width �, where � is small

enough so that this interval does not overlap any other event

times. If time is measured in days, for instance, then � = :5

would su�ce.)

3 Nested case-control designs

The decomposition �c + (�sc � �c) used to justify the Self and

Prentice [12] formula might also be applied to the situation of

a nested case-control design. It is well known, however, that a

correction term is not required in this situation | the ordinary

Cox model variance estimate can be used. It turns out that our

decomposition does not disagree with this.

First, note that in the prior justi�cation for the Self and

Prentice estimate that a second order e�ect was ignored. The

Cox information matrix is a sum of terms, one per death, each

of which is an empirical variance of the covariate vector Z over

the subjects at risk at that time. If we let �2(t) be the true

variance matrix at each death time and I(t) be the computed

term, then simple algebra shows that

E[I(t)] = �2(t)

 
1�

P
Yi(t)r

2
i (t)

[
P
Yi(t)ri(t)]2

!
:

For an unweighted mean this reduces to the usual (n � 1)=n

correction. If the number of subjects at each risk set were con-

stant for both the cohort and case-cohort design, then at � = 0

(ri � 1) the information matrix for the latter will be smaller by

a factor of [1� 1=nsc]=[1� 1=nc]. The �rst term in the Self and

Prentice formula, which in our decomposition should estimate
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the variance from a �t to the full cohort, is in expectation a

small amount too large.

In a nested case-control design, a set of controls is chosen

separately at each risk set. The controls are randomly chosen

from those available without reference to other risk sets, and are

used in the computation of �Z only for this risk set. As in the

case-cohort design, the variance of the estimate can be written

as the variance of �̂c plus a correction term, but because the

risk sets are independent this correction term can be written

as a sum of separate terms, one for each death time. At each

risk set the leverage of a subject can be written as equation 5,

without the integration. The contribution to the �nite sample

(\extra") portion of the variance is the sum of squares of these

over the risk set orP
Yi(s)[Zi(s)� �Z(s)][Zi(s)� �Z(s)]0r2i (s)

[
P
Yi(s)ri(s)]2

:

At � = 0 this reduces to I(t)=nsc.

Thus, the variance for the nested case-control design from

this perspective is the sum of two terms. The �rst is approxi-

mately (1�1=nsc) times the usual Cox model variance estimate

and the second approximately 1=nsc times the usual estimate.

A much more complete discussion of this second term and

its anticipated size for various designs is found in Langholz and

Thomas [6].

4 Comparing the estimates

As �, the proportion of cohort contained in our sample, goes

to 1, the Self and Prentice [12] variance converges to the usual

Cox model variance I�1, whereas the Lin and Ying [8] estimate
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converges to the in�nitesimal jackknife estimate D0D. Others

have suggested that the jackknife estimate may have a larger

mean-squared error than information matrix calculations, which

in turn suggests a potential superiority for the Self and Prentice

approach.

A small simulation study was conducted to examine the per-

formance of di�erent variance estimates, and to compare them

with the variance estimate of full cohort. A large cohort size

of 5000 was selected, but the total number of events was pur-

posely kept small to represent studies with 80 and 90% power,

a common range for clinical research. Failure times were expo-

nential with a hazard function of �(t) = exp(Z�) with � = 0:5;

the covariate Z was Uniform(0,2). Censoring was independent

of survival and uniform on (a; b) where a and b were chosen to

give approximately 100 or 150 events for the case of .8 and .9

power, respectively. For each of the two powers we generated

two subcohorts: (a) small cohort, where the cohort size was

taken as the expected number of events; (b) bigger cohort of

size where the cohort size was taken as three times the expected

number of events. The second subcohort size was motivated by

the common wisdom in epidemiologic case-control studies, that

the e�ciency of a study is not much improved by abstraction of

more than three controls per case.

One thousand such samples were generated. The �rst four

rows of table 1 show that the average estimated treatment e�ect

was essentially identical for �ts using the full cohort (n = 5000)

and using the much smaller case-cohort sample. The actual

variance of the estimate, over the 1000 simulations, was over

twice as large for the case-cohort design with a small cohort,

however, and approximately 30% larger for the 3:1 design.
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Table 1: Simulation Results. All variance estimates in the table are multi-

plied by 100.

Estimate of � (�̂) .8,a .8,b .9,a .9,b

full cohort .50 .50 .50 .49

case-cohort .51 0.51 0.51 0.49

var(�̂), full cohort 3.5 3.0 2.6 2.6

var(�̂), case-cohort 7.9 4.4 5.3 3.5

Estimate of var(�̂) .8,a .8,b .9,a .9,b

full cohort 3.3(.37) 3.3(.37) 2.5(.25) 2.5(.25)

case-cohort(Naive) 3.3(.51) 3.3(.43) 2.6(.34) 2.5(.28)

case-cohort(Self) 7.5(.99) 4.6(.50) 5.2(.59) 3.3(.32)

case-cohort(D
0

D) 7.6(1.38) 4.6(.71) 5.3(.85) 3.3(.46)

The next four lines compare the estimators of variance. The

�rst of these shows that the usual Cox variance estimator based

on the full data is approximately unbiased for var(�̂c), with a

standard error (in parenthesis) of 10 to 11% of the estimate. The

naive estimate for the case-cohort data set, i.e., the estimated

variance printed out by the programs when no correction for

the sampling method is applied, also estimates the full-cohort

accuracy of �̂. That is, it is an accurate estimate of the wrong

quantity. Both the Self and Prentice and the Barlow estimates

are approximately unbiased estimators of the actual variation

in �̂SC ; the former estimate appears to have a smaller variance,

especially for the smallest data sets.
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5 Example

Related to their long periods of immobility and the consequent

pooling of blood in the lower extremities, patients who have sus-

tained acute spinal cord injury (SCI) have a high incidence of

deep vein thrombosis (DVT) and its possibly fatal complication,

pulmonary embolism (PE), should the clot dislodge and travel

to the lungs. The high prevalence of DVT in the SCI population

has stimulated the investigation of several forms of DVT pro-

phylaxis, but the best methods of surveillance and prevention

remain unclear.

Winemiller et al. [14] took advantage of a registry of SCI

patients available at the the Mayo Clinic to examine the im-

pact of several aspects of patient care on the risk of DVT; the

registry has recorded all hospitalizations for SCI and their ma-

jor complications since 1976. Detailed data on the treatment of

each patient, however, is not present in the registry and must

be abstracted from the permanent (paper) medical record. Two

variables of particular interest, the day-by-day usage of heparin

and/or elastic stockings (TEDs) require one to peruse the entire

sequence of daily nursing notes, a tedious process. The presence

of DVT/PE was, however, available from the data base. Be-

cause of the pressures of time all 84 records of the subjects who

experienced an event were abstracted, but only 201 of the 344

remaining admissions from 1976 to 1995. Table 2 shows the

counts grouped by years.

For the non-event subjects, a random subset of records from

the calendar year was abstracted. The original goal was to select

two controls for each event, with at least two as well for the years

with no DVT cases, i.e., 1992 and 1995. However, the process
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76-80 81-85 86-90 91-95 Total

abstracted: event 27 36 14 7 84

abstracted: non-event 60 77 41 23 201

not abstracted 32 20 38 53 143

Table 2: Number of subjects for the DVT study

went better than anticipated (a rare event for a clinical study!),

and a further 29 records were randomly sampled from across

all years. The �nal proportion of non-cases abstracted for each

individual calender year ranged from 12% to 100%.

For analysis, let �j be the proportion of non-event records

abstracted for year j, and let the weight for a subject i who was

admitted in year j be wi = 1 for a DVT subject and wi = 1=�j

for an abstracted non-DVT subject. Time dependent covariates,

e.g. use of heparin, were coded by breaking each subject up into

multiple observations, each over an interval (start, stop]. Each

observation contains the values of the covariates that apply over

that interval, along with a status variable that indicates whether

the interval was terminated with an event (1-yes, 0-no). Analysis

was done using the S-Plus package since it supports non-integer

case weights. Here is the code and results for one of the models.

> fit <- coxph(Surv(start, stop, status) � age10 + male +

surveill + teds + cluster(id), weights=w)

> summary(fit)

coef exp(coef) se(coef) robust se z p

age10 0.06 1.1 0.06 0.07 0.9 0.35

male 0.93 2.5 0.38 0.39 2.4 0.02

surveill 1.08 2.9 0.28 0.29 3.7 <.01

ted -0.73 0.5 0.26 0.29 -2.6 0.01
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Rsquare= 0.03 (max possible= 0.534 )

Likelihood ratio test= 31.5 on 4 df, p=2.4e-06

Wald test = 23.5 on 4 df, p=1.0e-04

Score (logrank) test = 29.8 on 4 df, p=5.4e-06

Robust = 20.7 p=0.00037

(Note: the likelihood ratio and score tests assume

independence of observations within a cluster, the

Wald and robust score tests do not).

The variable age10 is age in decades, we see that the risk goes

up only slightly (6%) for each ten years of age and in fact that

age is not a signi�cant predictor. Male gender carries a 2.5 fold

risk in comparison to females. Active surveillance using doppler

echo carries a 3-fold risk, presumably it increases the chance of

�nding a thrombus and not the chance of forming one. TEDs,

as was expected, decrease the risk of DVT by approximately one

half.

The cluster statement in the call directs the coxph function

to create the robust variance estimate eD0 eD based on leverages

for each unique value of id. The column labeled se(coef) con-

tains the uncorrected variance I�1; z and p are based on the

robust estimate. In this particular study they are not very dif-

ferent, probobly because proportion of unsampled data is low.

In the overall analysis of the study, however, we found that the

correction was somewhat more important for those �ts that con-

tained a larger number of covariates.

To do the analysis in the manner of Self and Prentice [12]

requires a thought experiment. In their setup, a fraction �j of

the total admissions for the year would have been chosen, that
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fraction of the total cases abstracted, and then the remaining

subjects with an event added. In this study events were identi-

�ed �rst and sampling done later. If the study had been done

in the Self and Prentice manner, each of the abstracted events

would have had probability �j of being in the `random' subset

SC, and these events would have weight 1 in the computation of

�Z while the other events had weight 0. Instead, we might give

each event weight �j in the mean. Note that this is the same as

giving events a weight of 1 and non-event observations a weight

of 1=�j , that is, this modi�ed Self and Prentice approach will

yield the same coe�cients as above.

The modi�ed Self and Prentice variance can be written as

I�1 +D0W �D

where W � is a diagonal matrix of weights which are (1��j) for

the random sample of non-cases, and �j(1� �j) for each of the

subjects with an event.

> dfbeta <- resid(fit, type='dfbeta', collapse=id)

> newvar <- fit$naive.var + t(dfbeta) %*% diag(Wstar) %*% dfbeta

> fit$var <- newvar

> print(fit)

coef exp(coef) se(coef) robust se z p

age10 0.06 1.1 0.06 0.06 0.9 0.34

male 0.93 2.5 0.38 0.40 2.4 0.02

surveill 1.08 2.9 0.28 0.29 3.7 <.01

ted -0.73 0.5 0.26 0.28 -2.6 0.01

Here Wstar contains the vector W � of modi�ed weights. The

collapse argument to the residuals function causes a summa-

tion over subject to be performed so that the result has one row

per unique value of id. The Self and Prentice variance is then
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inserted into the �t object in place of the approximate jackknife

variance, and the result printed out. The di�erences between

this and the Barlow [1] estimate are quite small, for this data

set.

6 Discussion

Binder [2] discusses the �tting of Cox's proportional hazards

model to survey data. Case weights are applied to each ob-

servation consistent with the survey design, with a suggested

variance estimate of D0WD where W is formed \using design

based methods." The score equation for �̂ is a weighted one

U(�; t) =
nX
i=1

wi

Z t

0
[Zi(t)� �Z(�; t)]dNi(t) :

In case-cohort sampling case weights for all of the events are

�xed at 1, nevertheless the similarity to survey sampling ideas

is obvious.

This connection of all of the methods to simple sampling

ideas, unfortunately, has been obscured by the fact that all of

the papers cited use a di�erent notation for the quantities of

interest. Given that several of the current statistical packages

include dfbeta residuals for the Cox model as an option, both

solutions and variance estimates for a wide variety of models

should now be readily available to the statistical practictioner.
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A Appendix

Let � = nsc=nc be the number of subjects in the chosen sub-

cohort divided by the size of the total population. Self and

Prentice [12] show that n
1=2
c (�̂��) is an asymptotically normal

with mean 0 and covariance matrix ��1(�+�)��1. The matrix

� is consistently estimated by nc
�1I, where I is the informa-

tion matrix from the Cox model above, and � is consistently

estimated by

�̂ =
1

nc2

Z Z
~G(�; x; t)d �N (x)d �N (t)

with

~G(�; s; t) = (1� �)=� [f ~S(0)(s) ~S(0)(t)g�1 eH(1)(�; s; t)

+ f ~S(0)(s) ~S(0)(t)g�2 ~S(1)(s) ~S(1)(t) eH(0)(�; s; t)
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+ ~S(0)(s)�1 ~S(0)(t)�2 ~S(1)(t) eH(2)(�; s; t)

+ ~S(0)(s)�2 ~S(0)(t)�1 ~S(1)(s) eH(2)(�; s; t)] ;

eH is de�ned by

eH(0)(�; s; t) = eQ(0)(�; s; t)� ~S(0)(�; s) ~S(0)(�; t)eH(1)(�; s; t) = eQ(1)(�; s; t)� ~S(1)(�; s) ~S(1)(�; t)eH(2)(�; s; t) = eQ(2)(�; s; t)� ~S(0)(�; s) ~S(1)(�; t) ;

and eQ as

eQ(0)(�; s; t) =
1

nsc

X
i2SC

Yi(s)Yi(t)ri(�; s)ri(�; t)

eQ(1)(�; s; t) =
1

nsc

X
i2SC

Yi(s)Yi(t)ri(�; s)ri(�; t)Zi(s)Z
0

i(t)

eQ(2)(�; s; t) =
1

nsc

X
i2SC

Yi(s)Yi(t)ri(�; s)ri(�; t)Z
0

i(t) :

The ~S(i) are the weighted moments of Z:

~S(0)(�; s) =
1

nsc

X
i2SC

Yi(s)ri(�; s)

~S(1)(�; s) =
1

nsc

X
i2SC

Yi(s)ri(�; s)Zi(s)

~S(2)(�; s) =
1

nsc

X
i2SC

Yi(s)ri(�; s)Zi(s)Z
0

i(s) :

This de�nition appears quite formidable. However, if we

introduce the rescaled weights

wi(s) �
Yi(s) ri(�; s)P

j2SC Yj(s) rj(�; s)
;

then the terms can be rearranged into the following simple form

~G(�; s; t) = nsc(1��)=�
X
i2SC

wi(s)wi(t)fZi(s)� �Z(�; s)gfZi(t)� �Z(�; t)g0 :
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Consider the set of score residuals from the data set used in

the SAS example above, de�ned as

Li(�) =

Z
fZi(s)� �Z(�; s)g dMi(s)

where M is the martingale residual [13]. For the subjects in

SC, there are no events and the martingale residual is then

Mi(t) =
R t Yi(s)ri(�; s)d�0(�; s). (Again making use of the trick

that a subject in the subcohort SC who does experience an

event will be represented as two lines of data, one in SC and

one `outside' SC.) If we substitute in the Aalen estimate of �̂,

which has a jump at each observed event, the observed residual

is

Li(�) =

Z
fZi(s)� �Z(�; s)g

Yi(s)ri(s)P
j2SC Yj(s)rj(s)

dN (s) (5)

=

Z
fZi(s)� �Z(�; s)gwi(s)dN (s) :

If we let LSC be a matrix of score residuals, containing one row

for each of the observations in the subcohort SC, then straight-

forward algebra shows that

�̂ =
nc � nsc
nc2

L0SCLSC :

The dfbeta residuals for a Cox model, as found in SAS and

S-Plus for example, are de�ned as LI�1, based on the derivation

of Cain and Lange [3]. They are returned as a matrix or data

set with one row per observation and one column per variable.

The Self and Prentice estimate of variance is then

V = I�1 + (1� �)D0

SCDSC

where DSC is a subset of the dfbeta matrix that contains only

those rows for the subcohort SC.
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