
 
 
 

 
 

 
 

Concordance for Survival Time Data: 
Fixed and Time-Dependent Covariates and 

Possible Ties in Predictor and Time 

Walter K. Kremers 
Technical Report Series #80 

April 2007 
 
 
 

 
Department of Health Sciences Research 

and The William J. von Liebig Transplant Center 
Mayo Clinic 

Rochester, Minnesota 
 
 
 
 
 

This work was supported in part by a grant from the National 
Institutes of Health (DK-34238). 
 
 

 
Copyright 2007 Mayo Foundation 

 
 



Concordance with time-dependent covariates 2                         April 17, 2007 

 

 

Concordance for Survival Time Data:  

Fixed and Time-Dependent Covariates and Possible Ties in 

Predictor and Time  

 

Walter K Kremers 

Division of Biostatistics, Department of Health Sciences Research 

and The William J. von Liebig Transplant Center 

Mayo Clinic and Mayo Clinic College of Medicine 

200 First Street SW 

Rochester, MN 55905 

 

April 17, 2007 

 

Support: This work was supported in part by a grant from the National Institutes 

of Health (DK-34238). 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2007 Mayo Foundation 



Kremers WK 3 April 17, 2007 

Abstract  

 Concordance, or synonymously the C-statistic, is a valuable measure of 

model discrimination in analyses involving survival time data.  Generally it is 

defined based upon baseline covariates and with only limited consideration of 

ties.  Here we provide a definition of concordance in the case of survival data; we 

allow for time-dependent covariates with the counting process data 

representation and account for ties in the covariates and times.  This definition 

reduces to standard definitions of concordance in the case of fixed covariates 

and in the absence of ties.  This definition provides a general measure with 

similar intuition as earlier measures.  It also allows not only for comparison 

between models with time-dependent covariates but also for comparison of 

discrimination between models with and without time-dependent covariates.  

Asymptotic standard errors and methods for obtaining approximate confidence 

intervals are also provided. 

 

Key Words   

 Discrimination; Concordance; C-Statistic; C-Index; Survival; Time-

dependent covariate; Variance estimate; Cox proportional hazards  
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1. Introduction 

A common and useful measure of model discrimination is concordance or 

synonymously the C-statistic, which is applicable to any ordered outcome.  In 

general, consider selecting random pairs of patients, and for each pair note 

whether the model correctly predicts order, e.g., a higher model score for the 

better result.  Concordance is then the fraction of pairs for which the model is 

correct. A completely random prediction would have a concordance of 0.5, a 

perfect rule a concordance of 1.   

Concordance is most familiar from logistic regression, where it is also 

known as the area under the receiver operating curve.  It can also be described 

for survival data while allowing for censoring and no distributional assumption 

need be made for motivation or calcualtion1, 2.  Concordance for survival data can 

be described based upon all data pairs obtained by selecting two individuals from 

the sample.  Each element of each pair has a survival or censor time, an 

indicator of event or censoring and a predictor (risk) score.  If, based upon the 

information contained in a pair, one can determine which individual first incurred 

an event, then we say this pair is evaluable.  Depending on censoring, some 

pairs may not be evaluable, in particular, if one individual is censored before the 

other individual incurs an event, which includes the case where both individuals 

are censored.  Concordance then is the fraction of all evaluable pairs where the 

predictor score correctly predicts (is greater) for the individual with the earlier 

event.  If there were no censoring, this would be essentially Kendall’s Tau.  This 

measure is closely related to concordance from the logistic model3, 4 and both are 

widely used in the medical literature to measure model discrimination5-7. 

Generally concordance in survival analysis is described for the case with fixed 

covariates known at baseline though it has also been described for the case of 

time dependent covarites8, 9.  Here, we describe concordance for the case with 

time dependent covariates and also allow for ties in the predictor and ties in 

event times.  Note, for calculations, covariates need only be known at the time of 

each event.  A variance formula recently described for concordance10 is restricted 

to applications where there are no ties in the predictor or event times.  Here, we 
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derive a variance formula that not only allows for time-dependent covariates but 

also allows for ties in times and predictors, thus allowing for derivation of 

confidence intervals for a broad class of applications.  We also derive an 

asymptotic variance sometimes used in practice for which the derivation is not 

well documented.   

  

2. Definition of Concordance for time-dependent covariates 

For the definition of concordance for survival time data with time-

dependent covariates, consider a random sample of independent and identically 

distributed individuals with survival data, where for each individual we observe 

the earlier of an event time or a censor time and that the event and censor times 

are independent, and where we have knowledge of a covariate which is a 

function of time, and that the covariate function can be determined at each event 

time when an individual is at risk.  Though not required for calculation of 

concordance, we also consider this covariate function to be left continuous to 

assure the covariate is predictive and not simply correlative. 

From the sample, index those individuals that incurred events by i , and 

denote the corresponding event time by 
i

t .  We will then define a concordance 

measure based upon counts derived from those individuals who incurred events.  

In particular, considering all individuals except i  at risk at time 
i

t  and who do not 

have an event at time 
i

t  let 
i

C  be the count of individuals with predictor score at 

time 
i

t  less than the predictor score for individual i  at time 
i

t , let 
i

D  be the count 

of individuals with predictor score at time 
i

t  greater than the predictor score for 

individual i  at time 
i

t  and let 
i

P  be the count of individuals with predictor score at 

time 
i

t  equal to the predictor score for individual i  at time 
i

t .  Further, again 

considering all individuals except i  at risk at time 
i

t  , let 
i

T  be the count of 

individuals who too have an event at time 
i

t .  Then, 
i

C , 
i

D , 
i

P  and 
i

T  may be 

regarded as the count of pairs formed with individual i  at time 
i

t  concordant, 

discordant, tied in prediction and tied in time.  Note, from this construct 
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individuals who are tied in both predictor and time are counted in 
i

T  and not in 
i

P .  

Conceptually we can consider concordance for i  at time 
i

t  as [
i

C  + ½ 
i

P ]/[ 
i

C  + 

i
D  + 

i
P ] following Harrell1 or as [

i
C  + ½ 

i
P  + ¼ 

i
T ]/[ 

i
C  + 

i
D  + 

i
P  + ½ 

i
T ] 

following Therneau in his formulation of the survConcordance function in the S-

Plus® software (S-Plus® 7, Insightful Corp, Seattle, WA, 2005).  Summing over 

all patients with events we define the concordance for the whole sample as  

1.1) ( ) ( )+½ + +  
i i i i ii i i i i

C P C D P∑ ∑ ∑ ∑ ∑  

following Harrell or as  

1.2) ( ) ( )+½ +¼ + + +½  
i i i i i i ii i i i i i i

C P T C D P T∑ ∑ ∑ ∑ ∑ ∑ ∑  

following Therneau.  The formulation 1.2) is also suggested by considering 

Kendall’s Tau where the contribution is intermediate if individuals are tied on 

either (though not both) of two variables2.  According to the counting mechanism 

described above individuals tied in time are counted twice, once when 

considering individual i  as the reference and again when considering individual 

j  as the reference, and therefore the 
i

T  terms are multiplied by a half when 

contrasted with the 
i

P  terms. 

In this description of concordance there is explicitly no reference to 

counting process data representation.  Still, the comparison of every individual at 

risk each time there is an event requires knowledge of covariates at each event 

time when an individual is at risk and this is provided by the counting process 

data representation11.  Note, as is generally required of time dependent 

covariates, the covariates must be “known” at the event times, that is they must 

be a function of the current or past and not the future.  For actual calculations 

only values of covariates for individuals in the risk set when events occur enter 

into the calculations.  In practice it will sometimes be convenient to record in the 

data representation just the covariates of individual at risk each time there was 

an event rather than recording all changes in covariates.              
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3. Consistency with Earlier Definitions of Concordance using baseline or 

time-independent covariates 

To show that the above definition of concordance is consistent with earlier 

definitions consider the above definition for the case when a) the time-dependent 

covariates are degenerately constant, that is identical to the baseline predictors 

and b) all individuals are continually at risk from time 0 to either their event or 

censor time.  The earlier definitions of concordance consider the set of all 

possible pairs possibly drawn from the sample, the counts of pairs concordant, 

discordant, tied in prediction and tied in time.  Definition 1.1 and 1.2 are also 

based upon counts of pairs possibly drawn from the sample.  The only difference 

is that 1.1 and 1.2 essentially index by event times rather than by observation 

number.  Because the index only serves to assure that all pairs are properly 

counted, the counts are invariant to the index and definitions 1.1 and 1.2 are the 

same as those of Harrell and Therneau.  The minor difference between the two 

counting mechanisms concerns ties in time, where the index based upon 

observation number does not lead to double counting, but where our counting 

mechanism based in part upon event times double counts.  Adjusting for this as 

we have, the 1.1 and 1.2 are consistent with earlier definitions of concordance.  

 

4. An Alternate Formulation, Variance and Confidence Intervals 

In defining concordance for time-dependent data we essentially took the 

event times as an index.  Consideration of the formulae though shows that an 

alternate expression can be given, which is more similar to the usual description 

of concordance for the case without time-dependent covariates.  Concordance 

can be expressed as a function of all pairs of individuals where each pair 

contributes 1, ½ or 0 to the numerator if the pair is concordant, tied or discordant.  

Here concordance for the pair is inferred if it can be determined which one of the 

pair first had an event and if at the time of that first event the time-dependent 

predictor of the individual with an event was greater than the individual’s time-

dependent predictor with the later event. Ties and discordance are defined 
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analogously.  Letting 
ij

C , 
ij

D , 
ij

P  and 
ij

S  be the contributions based upon pair 

( , )i j , 1.1) and 1.2) can be based upon sums of 
ij

C , 
ij

D , 
ij

P  and 
ij

S , in particular  

1.3) (
ij

i j

C
<

∑ + ½ 
ij

i j

P
<

∑ )/( 
ij

i j

C
<

∑  + 
ij

i j

D
<

∑  + 
ij

i j

P
<

∑ ) 

1.4) (
ij

i j

C
<

∑ + ½ 
ij

i j

P
<

∑  + ½ 
ij

i j

T
<

∑ )/( 
ij

i j

C
<

∑  + 
ij

i j

D
<

∑  + 
ij

i j

P
<

∑  + 
ij

i j

T
<

∑ ) 

represent 1.1) and 1.2).  From these formulae it is a straight forward matter, 

though tedious, to obtain variances and covariances for and between the terms 

ij

i j

C
<

∑ , 
ij

i j

D
<

∑ , 
ij

i j

P
<

∑  and 
ij

i j

T
<

∑ taking special care of the dependence between 

terms with a single common subscript.  For the description of Cov(
ij

i j

X
<

∑ ,
ij

i j

Y
<

∑ )  

where 
ij

X  and 
ij

Y  are generic for any of 
ij

C , 
ij

D , 
ij

P  and 
ij

S , observe that   

E[
ij

i j

X
<

∑ *
ij

i j

Y
<

∑ ] = E[
ij ij

i j

X Y
<

∑ ] + E[
(( )&( ))&
(( )|( ))&
(( )|( )|
( )|( ))

ij kl

i j k l
i k j l
i k i l
j k j l

X Y
< <
≠ ≠
= =
= =

∑ ] + E[
(( )&( ))&
(( )&( )&
( )&( ))

ij kl

i j k l
i k i l
j k j l

X Y
< <
≠ ≠
≠ ≠

∑ ]     

The first expectation to the right of the equals sign consists of the product of 

terms 
ij

X  and
kl

Y  sharing both subscript values; the second expectation consists 

of the product terms where exactly one of the subscript values is shared; the third 

term consists of the product of terms where none of the subscript values is 

shared.  By independence of 12X  and 34Y  the above expression is the same as   

Q E[ 12 12X Y ] + R E[ 12 13X Y ] + S E[ 12X ]E[ 12Y ] 

where Q , R  and S  are the number of terms in the respective summations.  

Because of the identity 
1

I

i
i

=∑  = ( 1) / 2I I + , Q  = ( 1) / 2n n− , where n  denotes the 

sample size.  For derivation of R  observe that 
ij

X can be paired with ( 1)n i− −  

terms 
kl

Y  where k = i  and l ≠ j , and ( 1)i −  
kl

Y  terms where l=i and k≠ l , that is 

there are ( 2)n −  
kl

Y terms sharing the subscript i and not j.  Considering the index 

j shows an additional ( 2)n −  
kl

Y  terms sharing one subscript in common with 
ij

X  
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for a total of 2( 2)n −  terms.  As there are ( 1) / 2n n−  
ij

X  terms, R = ( 2)( 1)n n n− − .  

As there are a total of 2Q  product terms, S  = 2( )Q Q R− − , and  

1.5) Cov(
ij

i j

X
<

∑ ,
ij

i j

Y
<

∑ ) = Q E[ 12 12X Y ] + R E[ 12 13X Y ] – ( )Q R+ E[ 12X ] E[ 12Y ] 

Recognizing that for any i<j, that at most one of the 
ij

C , 
ij

D , 
ij

P  and 
ij

S  can take 

the value 1, and since all terms can only take the value 0 or 1, we have that  

Var(
ij

i j

X
<

∑ ) = Q E[ 12X ] + R E[ 12 13X X ] – ( )Q R+ E[ 12X ]2 

and for X  different from Y   

Cov(
ij

i j

X
<

∑ ,
ij

i j

Y
<

∑ ) = R E[ 12 13X Y ] – ( )Q R+  E[ 12X ]E[ 12Y ] 

Substituting the E[ 12X ] and E[ 12 13X Y ] by the sample moments yields 

estimates for Var(
ij

i j

X
<

∑ )  and Cov(
ij

i j

X
<

∑ ,
ij

i j

Y
<

∑ ).  Computations of the moments 

are dominated by E[ 12 13X Y ]  for which there are R  = ( 2)( 1)n n n− −  terms involved. 

Thus these computations are of order n3 and may be extensive for large samples.     

By linearity of the numerator and denominator in 1.4)  

Var(
ij

i j

C
<

∑ + ½ 
ij

i j

P
<

∑  + ½ 
ij

i j

T
<

∑ ) = Var(
ij

i j

C
<

∑ ) + ¼ Var(
ij

i j

P
<

∑ ) + ¼ Var(
ij

i j

T
<

∑ ) 

+ Cov(
ij

i j

C
<

∑ ,
ij

i j

P
<

∑ ) + Cov(
ij

i j

C
<

∑ ,
ij

i j

T
<

∑ ) + ½ Cov(
ij

i j

P
<

∑ ,
ij

i j

T
<

∑ ) 

Var( 
ij

i j

C
<

∑ +
ij

i j

D
<

∑ +
ij

i j

P
<

∑ +
ij

i j

T
<

∑ ) =  

 Var(
ij

i j

C
<

∑ ) + Var(
ij

i j

D
<

∑ ) + Var(
ij

i j

P
<

∑ ) + Var(
ij

i j

T
<

∑ ) 

+ 2 Cov(
ij

i j

C
<

∑ ,
ij

i j

D
<

∑ ) + 2 Cov(
ij

i j

C
<

∑ ,
ij

i j

P
<

∑ ) + 2 Cov(
ij

i j

C
<

∑ ,
ij

i j

T
<

∑ )  

+ 2 Cov(
ij

i j

D
<

∑ ,
ij

i j

P
<

∑ ) + 2 Cov(
ij

i j

D
<

∑ ,
ij

i j

T
<

∑ ) + 2 Cov(
ij

i j

P
<

∑ ,
ij

i j

T
<

∑ ) 

Cov(
ij

i j

C
<

∑ + ½ 
ij

i j

P
<

∑  + ½ 
ij

i j

T
<

∑  ,  
ij

i j

C
<

∑  + 
ij

i j

D
<

∑  + 
ij

i j

P
<

∑  + 
ij

i j

T
<

∑ ) =  

 Var(
ij

i j

C
<

∑ ) + ½ Var(
ij

i j

P
<

∑ ) + ½ Var(
ij

i j

T
<

∑ ) 
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+ Cov(
ij

i j

C
<

∑ ,
ij

i j

D
<

∑ ) + 1 ½ Cov(
ij

i j

C
<

∑ ,
ij

i j

P
<

∑ ) + 1 ½ Cov(
ij

i j

C
<

∑ ,
ij

i j

T
<

∑ )  

+ ½ Cov(
ij

i j

D
<

∑ ,
ij

i j

P
<

∑ ) + ½ Cov(
ij

i j

D
<

∑ ,
ij

i j

T
<

∑ ) +  Cov(
ij

i j

P
<

∑ ,
ij

i j

T
<

∑ ) 

Based upon these variances and covariances one may construct approximate 

confidence intervals for concordance using Fieller’s theorem12 which is based 

upon the identity for the bivariate normal ( , )X Y  of  

1.6) P( 2( )X rY− > 2

2zα (Var ( )X  – 2 r Cov ( , )X Y + 2r Var ( )Y ) = α 

for r  = /
X Y

µ µ  and where 2zα  is the α/2 quantile of the standard normal 

distribution.  As the numerator and denominator in 1.4) are approximately normal, 

making the appropriate substitutions for X , Y , Var ( )X , Var ( )Y  and Cov ( , )X Y  in 

1.6) and solving the inequality for r  yields confidence intervals for concordance 

with level very nearly 100(1 )%α− .  

More simply, based upon Taylor series expansion  

Var ( /X Y ) ≈ 2( / )
X Y

µ µ  (Var( X )/ 2

X
µ  + Var(Y )/ 2

Y
µ  – 2*Cov( X ,Y )/(

X Y
µ µ ))  

This approximation can be used to obtain an approximate standard deviation for 

1.4), and in turn an approximate 100(1 )%α−  confidence interval with limits 1.4) 

2zα± times the standard deviation. Similar derivations may be made for 1.3).   

Computationally simpler than the “direct” methods described above for 

derivation of variances, standard deviations and confidence intervals are 

resampling methods like the bootstrap and jackknife.  The bootstrap method will 

likely provide more accurate confidence intervals for the true concordance.  

Confidence intervals based on the jackknife estimate of standard error, however, 

will generally be computationally less intense.  Applicability of the jackknife is 

supported by the recognition that 1.3) and 1.4) are functions of U-statistics13.  

Though the resampling methods may be simple to program their run times may 

be long compared to the direct methods.   

Computationally simpler than the jackknife itself is an approximate 

jackknife, based upon an approximation of � �( )( )iθ θ− .  Let α  and β  be the 

numerator and denominator terms in the description of concordances 1.3 or 1.4 
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but with the summation over all i j≠  instead of i j< .  Note, α  and β  involve 

double counting.  Let 
ij

α be the contribution to the numerator obtained when 

comparing individuals i  and j  and similarly 
ij

β  for the denominator.  Let 
i

α •  = 

ij

j i

α
≠

∑ (only j  varies in the summation) and 
i

β •  = 
ij

j i

β
≠

∑ .  Then, since α  = 
i

i

α •∑  

and β  = 
i

i

β •∑ , we can express concordance as �θ  = α β .  If �( )iθ  is 

concordance calculated leaving out individual i  then, by the double counting in �θ ,  

   �
( )iθ  = 

( )
( )

2

2

i

i

α α

β β
•

•

−

−
 

indicating the jackknife variances may be obtained in practice without a complete 

rederivation for each subsample.  Further, by Taylor’s series expansion,   

 � �( )( )iθ θ−  ≈  2(1/ )(2 ) ( / )(2 )
i i

β α α α β β β• •− − + −  

and  

� �( )
2

( )i

i

θ θ−∑  ≈   

2 2 2 4 2 34 (1/ )( ) ( / )( ) 2( / )( )( )i i i i

i

β α α α β β β α β α α β β• • • •• • ••
 − + − − − − ∑  

= 2 2 2 2 24( / ) ( ) / ( ) / 2( )( ) /( )i i i i

i

α β α α α β β β α α β β αβ• • • •
 − + − − − − ∑  

= 2 2 2 2 24( / ) / / 2 /( )i i i i

i

α β α α β β α β αβ• • • •
 + − ∑  

yielding the approximate jackknife estimate of variance.  Considering 

nonparametric correlations, Quade14 describes an asymptotic variance of the 

same general form.  In this article, though, Quade cites an earlier work for 

justification of the variance formulae15 which I have not been able to obtain.  This 

general variance formula is also used by Frank Harrell for calculation of the 

concordance variance in his R/S-Plus rcorr.cens functions Ratfor/Fortran service 

routine16.  The approximate jackknife, at least as programmed by myself, 

requires minimally less computation and programming than the jackknife, though 

this difference is very small.     
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This jackknife asymptotic variance can also be motivated considering the 

general properties of U-statistics directly as described by Hoeffding17 and 

Lehmann18.  Lehmann also describes an identity (formula A.202, page 368) 

relating Cov(
ij

X ,
ik

X ) and ( | )
ij

Var X data for indivdual i  which can be used to 

describe variance formula using a direct method with calculations of the order n2, 

though we do not consider this further here.  Since all 
i

α •  and 
i

β •  can be easily 

obtained numerically using a double loop over i  and j , the approximate 

jackknife provides a simple and intuitive method for variance estimation. 

 

5. An application 

In an earlier work19
, we studied the ability of the Model for End-Stage Liver 

Disease (MELD) score, which is a function of blood creatinine level, bilirubin level 

and prothrombin time, to discriminate survival in patients with advanced liver 

disease.  Because of the low number of censors and specific interest in the time 

points studied of 1 week, 3 months and 1 year, we used the logistic model 

instead of modeling actual survival times and found concordance measures in 

the range of 73% to 95%.  In a subsequent work20 we considered the 

improvements in estimating survival obtained by including the updated MELD 

score based upon updated measures of creatinine, bilirubin and prothrombin time 

in patients, using a Cox proportional hazards regression model with time-

dependent covariates.  Although a major finding of the paper was that patients 

who had had multiple labs drawn were at an increased risk of mortality (likely a 

selection effect), the time-dependent (updated) MELD score was also a stronger 

predictor of survival than baseline MELD score.  Using follow up information on 

861 patients including 80 deaths, baseline MELD score was associated with 

patient survival with a concordance of 79.18% (using 1.2).  Using Fieller’s 

theorem the approximate 95% confidence interval is (73.82%, 84.26%).  The 

estimated standard error was 2.59% using the direct method, 2.60% by the 

approximate jackknife and 2.64% by the jackknife.  Note, we would not advocate 

interpretation of the point or confidence estimates to the accuracy of 0.01% but 
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provide this level of precision here for the comparison of the different methods for 

estimating confidence intervals.  

Using the time-dependent or most current MELD score information to 

predict survival, 3861 records were required to describe the changes in MELD 

scores during follow up, and concordance was 81.95% (using 1.2) for an 

increase of about 2.8%.  Using Fieller’s theorem the approximate 95% 

confidence interval is (77.03%, 86.70%).  For the time-dependent MELD score, 

the estimated standard error of concordance was 2.40% by the direct method, 

2.41% by the approximate jackknife and 2.44% by the jackknife.   

For both of these examples we see that the approximate jackknife was 

nearer the direct estimate than the jackknife.  The standard error estimates were 

relatively insensitive to which of the three methods was used in estimation.  Still, 

all of the methods based upon an estimated standard error of concordance gave 

confidence intervals ever so slightly shorter than those derived using Fieller’s 

theorem.  Examples can also be constructed where the methods based upon the 

estimated standard error of concordance give longer confidence intervals than 

those derived using Fieller’s theorem.   

For the calculation of standard errors and confidence intervals, Fieller’s 

theorem and the direct method took 4 minutes and the jackknife about 15 

seconds when run on the same platform.  An attempt was made to program 

efficiently but not necessarily optimally.  The coding for the approximate jackknife 

and for the jackknife was less involved than that of the direct method.  Programs 

were written in SAS® (SAS Institute Inc., Cary, NC, 2003) and are available from 

the author.  

 

6. Extensions 

The general definition of concordance is motivated by the need to account 

for time dependent covariates.  In creating the definition, though, we have 

essentially employed the counting process representation of the survival data11.  

Thus our definition of concordance can also be applied to data where individuals 

are entering and leaving the risk set, irrespective of whether individuals’ 
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covariates are time dependent or time independent.  This is especially important 

when considering alternate time scales in the Cox model such as patient age, or 

calendar time, which may be indicated when these alternate time scales are 

stronger determinates of survival than the more typical construct time since study 

entry21.   

The general definition of concordance can be easily adapted to the case 

of competing risks survival analysis.  Here, we could base a single overall 

measure of concordance upon the number of concordant and discordant pairs 

considering each event of any type comparing the predictor of that event type 

with the predictors of other individuals at risk at the time of the respective event.  

Being a reduction in dimensions, this overall measure of concordance could not 

provide the same information as the collection of the individual concordances but 

still could serve as a single summary measure of model discrimination.   

 

7. Discussion 

When modeling survival outcomes using time-dependent covariates, a 

natural model is the Cox proportional hazards model22, 23.  For the calculation of 

concordance, however, no model is required.  Calculation of concordance 

depends solely on the survival information and the predictor scores at the event 

times.  In practice though, there are often multiple predictors of survival and they 

are fit using a Cox model.  The Cox model then yields estimates of Xβ , which 

serves as a summary score for each patient’s relative hazard, and the estimate 

can be used for the calculation of concordance.  When fitting a Cox model with 

time-dependent covariates, statistical softwares commonly provide estimates of 

Xβ  making the calculation of concordance a straight forward matter for most 

anticipated applications.   

The general definition of concordance can be re-expressed in terms of 

ranks, which may offer an additional insight to the behavior of concordance for 

survival data.  First, considering the case when there are no ties for individual i  

and time 
i

t , the rank of the score for individual i , amongst the set at risk at time 
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i
t , minus 1, equals the number of concordant pairs.  That is, if 

i
R  denotes the 

rank of the individual i  with event at 
i

t , then 
i

C  = ( 1)
i

R − ,  Further if 
i

N  is the 

size of the risk set at time 
i

t , then 
i

C  + 
i

D , the number of pairs for comparison 

with individual i  at time 
i

t , equals ( 1)
i

N −  and concordance can be represented 

as  

 ( 1)
ii

R −∑ / ( 1)
ii

N −∑  

Making appropriate definitional modifications to account for ties, we see that 

concordance, the probability of a model correctly predicting which of two 

randomly chosen individuals will first have an event, is closely related to the 

average rank of individuals with events relative to the average risk set size. 

 

8. Conclusion 

With the general definition of concordance for survival data considered here, one 

is able to significantly broaden the types of survival data for the description of 

concordance.  We have a means for measuring model discrimination which is 

itself directly interpretable and also allows direct comparison between all models 

to which the definition applies.  In particular, the measure can be used to 

compare between two models with time-dependent covariates or between two 

models where one model is based upon baseline covariates and the other is 

based upon baseline and time-dependent covariates and allowing for ties.  This 

general definition of concordance, together with its variance estimates, should be 

an asset when evaluating discrimination in survival models. 
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