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1 Introduction

One of the common questions in medical re-
search is: does a variable x influence a particular
outcome y? (Does smoking cause lung cancer? Will
this treatment improve disease outcomes? Will this
medication increase the risk of cardiovascular dis-
ease?) This simple question is often very difficult
to answer due to the presence of other confounding
factors that are related to the factor of interest x
and also affect the outcome. For example, factors
that indicate a patient is sicker may predict both
that a patient may be more likely to receive a par-
ticular treatment (x), and that a patient is more
likely to have a poor outcome (y). In this case,
failing to account for confounders could produce a
biased estimate of the treatment effect. Hence, ad-
justing for confounders is an important issue in med-
ical research. Randomized controlled trials are one
of the best methods for controlling for confounders,
as they allow for perfect balance on selected im-
portant factors and random balance on all others
(both known and unknown, both measured and un-
measured), since the treatment assignment is inde-
pendent of the other factors. However, randomized
controlled trials are not always feasible or practi-
cal. Nor are all questions amenable to a trial, e.g.,
does high blood pressure increase the risk of stroke,
since patients cannot be assigned to one value of the
predictor.

In observational studies for instance patients are
not randomly assigned to treatments, and factors
that influence outcome may also have influenced
the treatment assignment, which is the definition of
confounding. In observational studies the analysis
must adjust for the confounding factors to properly
estimate the influence of the factor of interest on
the outcome. This is true whether the chosen pre-
dictor x is a simple yes/no variable such as treat-
ment or a more complex physiologic measurement,
though much of the literature on marginal struc-
tural models is motivated by the treatment exam-
ples. There are two major approaches to adjusting
for confounders: the conditional approach and the
marginal approach.

A key aspect to both approaches is the concept

of a target population, essentially a distribution d(A)
over the set of confounders A. We would like to es-
timate the effect of the variable of interest x on the
outcome y in a population that had this structure.
The most common target population is the distri-
bution of the confounders A in the study sample as
a whole, followed by using some external reference
population. The conditional approach first creates
predictions, followed by a weighted average of pre-
dicted values over d(A) for each value of x. The
marginal approach first defines case weights so that
each substratum of x values, when weighted, has
an equivalent distribution d(A) of confounders, and
then forms predictions from the weighted sample.

In the conditional approach, the idea is to first
form predictions E(y|x,A) for each possible com-
bination of the variable of interest x and possible
values of the set of confounders (or adjustors) A.
One then averages predicted values over the distri-
bution d(A) for any fixed value of x. Two common
approaches for forming the predictions are stratifica-
tion and modeling. In the former the data is divided
into subsets based on A, often referred to as strata,
and the relationship y|x is assessed within each stra-
tum. Stratification is challenging, however, for more
than 1 or 2 adjustors due to the need to create sub-
sets that are both homogeneous (to avoid confound-
ing within the stratum) and yet large enough to
separately examine the y|x relationship within each
of them. The more common approach has been to
jointly model all the variables using both x and A as
covariates. The primary limitation of this approach
is that the model must be completely correct, in-
cluding in particular interrelationships between x
and any variables in A. Are the relationships ad-
ditive, multiplicative, or otherwise in affect? Is the
effect linear, non-linear but smooth, or categorical?
Are there interactions? Despite the fact that this
is the most commonly used method, it is also the
most likely to fail. It is too easy to blithely say “the
model was adjusted for age and sex” when these
were simply added as linear covariates, with no ver-
ification that the age effect is actually linear or that
it is similar for the two sexes. More worrisome is
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the inevitable overfitting that occurs when the set
of potential confounders A is large, particularly if
selection processes such as stepwise regression are
used. More damming is that it can be shown that
for time dependent treatment effects modeling may
not give the correct result no matter how large the
sample size nor how sophisticated the modeler. For
example if A influences both treatment and an in-
termediate outcome y as in figure 1, and then both
y and A influence subsequent treatment cycles and
outcomes. Bias can be large in this case, with both
under or over estimation of the actual treatment ef-
fect possible.

A T Y

Figure 1: Directed acyclic graph
depicting a confounding factor (A)
that effects both the treatment (T)
and the outcome (Y).[18]

The marginal approach is based on the fact that
if a sample is balanced with respect to potential
confounders, then the estimated effects for treat-
ment will be unbiased, even if confounders are not
modeled correctly (or modeled at all). The idea
then is to balance the study population for the con-
founding factors, within each level of x, and produce
overall estimates of E(y|x) using the weighted sam-
ple. There are two main methods for creating a bal-
anced sample: matched selection and re-weighting.
Examples of matched selection include randomized
controlled trials and matched case-control studies.
Re-weighting has historical roots in survey sam-
pling, where samples may be drawn disproportion-
ately from various subpopulations and are later re-
weighted to represent the entire populations. The
key idea of re-weighting is to create case weights
such that the re-weighted data is balanced on the
factor of interest (e.g., treatment assignment) as it
would have been in a randomized controlled trial.
As with the conditional approach, weights can be

estimated either by categorizing into homogeneous
subsets of the confounders A or by fitting over-
all models to esimate probabilities. Limitations of
marginal methods are that you can only balance on
known factors, the number of balancing variables is
limited, and there is a possibility that some patients
may have large weights (i.e., a few individuals may
represent a large part of the weighted sample). An
advantage is that it is possible to balance on fac-
tors that influence both the treatment assignment
and the outcome, whereas conditional adjustment
for such factors may adjust away the treatment ef-
fect. In practice an analysis may choose to match
on some variables and directly model others.

1.1 An example of the two methods

As an initial example of the two main approaches,
we will use data from a study of free light change
(FLC) immunoglobulin levels and survival [5]. In
1990 Dr. Robert Kyle undertook a population based
study, and collected serum samples on 19,261 of
the 24,539 residents of Olmsted County, Minnesota,
aged 50 years or more [10]. In 2010 Dr. A. Dis-
penzieri assayed a subfraction of the immunoglob-
ulin, the free light chain (FLC), on 15,748 samples
which had sufficient remaining material to perform
the test. A random sample of 1/2 the cases is in-
cluded in the R survival package as the “flcdata”
data set.

In the original analysis of Dispenzieri the sub-
jects were divided into 10 groups based on their total
free light chain. For simpler exposition we will di-
vide them into 3 groups consisting of 1: those below
the 70th percentile of the original data, 2: those be-
tween the 70th and 90th percentile, and 3: those at
the 90th or above. The 3 dashed lines in both panels
of Figure 2 show the overall survival (Kaplan-Meir)
for these cohorts. High FLC is associated with worse
survival, particularly for the highest cohort. Aver-
age free light chain amounts rise with age, however,
in part because it is eliminated through the kidneys
and renal function declines with age. Table 1 shows
the FLC by age distribution. In the highest decile
of FLC (group 3) over half the subjects are age 70
or older compared to only 23% in those below the
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70th percentile. The survival distributions of the 3
FLC groups are clearly confounded by age, and to
fairly compare the survival of the 3 FLC groups, we
need to adjust for age.

The conditional approach to adjustment starts
by estimating the survival for every age/sex/FLC
combination, and then averaging the estimates. One
way to obtain the estimates is by using a Cox model.
To allow for non-proportional effects of FLC it was
entered as a strata in the model, with age and sex as
linear covariates. The assumption of a completely
linear age effect is always questionable, but model
checking showed that the fit was surprisingly good
for this age range and population. Predicted sur-
vival curves were then produced from the model
for three scenarios: a fictional population with the
age/sex distribution of the overall population but
with everyone in FLC strata 1, a second with ev-
eryone in FLC group 2 and a third with everyone in
FLC strata 3. These three curves are shown with
solid lines in the panel on the left side of Figure 2.

The marginal approach will first reweight the
patients so that all three FLC groups have a similar
age and sex distribution. Then ordinary Kaplan-
Meier curves are computed for each FLC group us-
ing the reweighted population. The solid lines in
the right panel of Figure 2 show the results of this
process. The new weights can be based on either
logistic regression models or tabulating the popu-
lation by age/sex/FLC groups. (We will use the
latter since it provides example data for a following

discussion about different weighting ideas.) When
dividing into subsets one want to use small enough
groups so that each is relatively homogeneous with
respect to age and sex, but large enough that there
is sufficient sample in each to have stable counts. We
decided to use 8 age groups (50-54, 55-59, . . . , 75-79,
80-89, 90+), giving 48 age by sex by FLC subsets in
all. All observations in a given group are given the
same sampling weight, with the weights chosen so
that the weighted age/sex distribution within each
FLC stratum is identical to the age/sex distribution
for the sample as a whole. That is, the same popula-
tion target as was used in the conditional approach.
The mechanics of setting the weights is discussed
more fully in section 3.

In both methods correction for age and sex has
accounted for a bit over 1/2 the original distance
between the survival curves. The absolute predic-
tions from the two methods are not the same, which
is to be expected. A primary reason is because of
different modeling targets. The marginal approach
is based on the relationship of age and sex to FLC,
essentially a model with FLC group as the outcome.
The conditional approach is based on a model with
survival as the outcome. Also, one of the approaches
used continuous age and the other a categorical ver-
sion. In this case the relationships between age/sex
and FLC group and that between age/sex and sur-
vival are fairly simple, both approaches are success-
ful, and the results are similar.

2 Propensity scoring

A common approach to dealing with multiple
confounding factors that affect both the treatment
assignment and the outcome of interest is propen-
sity scoring [19]. A propensity score is the probabil-
ity (or propensity) for having the factor of interest
(e.g., receiving a particular treatment) given the fac-
tors present at baseline. A true propensity score is
a balancing score; the set of all subjects with the
same probability of treatment will have identical
distributions of baseline factors among those who
were treated and those who were not treated (i.e.,

all factors will be perfectly balanced at all levels of
the propensity score) [1]. Typically the true propen-
sity score is unknown, but it can be estimated us-
ing study data and common modeling techniques.
For example, logistic regression is commonly used
with a binary outcome, and the resulting multivari-
able logistic regression model can be used to obtain
predicted probabilities (i.e., propensity score values)
for both the probability of being treated, p, and the
probability of not being treated 1 − p. When there
are more than 2 groups, as in the FLC example, ei-
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Figure 2: Survival of 15,748 residents of Olmsted County, broken into three cohorts based
on FLC value. The dashed lines in each panel show the original survival curves for each
group. The solid lines in the left panel were obtained by modeling to adjust for age and
sex, and the solid lines in the right panel were obtained by using weighting methods.

ther a model with multinomial outcome or multiple
logistic regressions can be used.

2.1 Variable selection

Deciding which factors should be included in the
propensity score can be difficult. This issue has
been widely debated in the literature. Four possible
sets of factors to include are: all measured base-
line factors, all baseline factors associated with the
treatment assignment, all factors related to the out-
come (i.e., potential confounders), and all factors
that affect both the treatment assignment and the
outcome (i.e., the true confounders) [1]. In practice
it can be difficult to classify the measured factors
into these 4 categories of potential predictors. For
example, it is often difficult to know which factors
affect only the treatment assignment, but not the
outcome. Some have suggested that including all
the available factors, even if the model is overfit,
is acceptable when building a propensity score, as
prediction overrides parsimony in this case. How-
ever, others have shown this approach is flawed, as

overfitting the propensity score model can lead to
a wider variance in the estimated scores, in partic-
ular an overabundance of scores near 0 or 1, which
in turn results in a larger variance of the estimated
treatment effect. Similarly, inclusion of the factors
that only affect the treatment assignment but do
not affect the outcome also results in more extreme
scores.

The most informative observations in a weighted
sample are those with scores close to 1/2, leading
to overlap between the set of propensity scores for
different values of the primary variable if interest
x. The issue of overlap is examined in Figure 3,
which shows three scenarios for hypothetical stud-
ies comparing the probability of no treatment and
treatment. In the left panel, there is a small range
of probabilities (35-50%) where patients can receive
either treatment. In the middle panel, there is no
overlap in probabilities between those who do and
do not receive treatment. This represents complete
confounding, which can occur when there are treat-
ment guidelines dictating which patients will and
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will not be treated. In this case, it is impossible
to statistically adjust for the confounding factors
and determine the effect of the treatment itself. In
the right panel, there is good overlap between the
untreated and treated groups. This is the ideal sce-
nario for being able to separate the impact of con-
founders from that of the treatment.

Returning to the issue of variable selection, the
recommended approach is to include only the po-
tential confounders and the true confounders in the
propensity score [1]. This will result in an imbal-
ance between the treated and untreated group in
the factors that influence only the treatment assign-
ment but not the outcome. However, since these
factors do not affect the outcome, there is no ad-
vantage to balancing them between the treatment
groups. In practice, most factors are likely to affect
both the treatment assignment and the outcome, so
it may be safe to include all available baseline fac-
tors of interest. The exceptions that will require
further thought are policy-related factors and time-
related factors. For example, treatment patterns
may change over time as new treatments are intro-
duced, but the outcome may not change over time.
In that case, including a time factor in the propen-
sity score would unnecessarily result in less overlap.
It’s also important to note that only baseline factors
can be included in the propensity score, as factors
measured after the treatment starts may be influ-
enced by the treatment.

2.2 Balance

The goal of propensity scoring is to balance the
treated and untreated groups on the confounding
factors that affect both the treatment assignment
and the outcome. Thus it is important to verify that
treated and untreated patients with similar propen-
sity score values are balanced on the factors included
in the propensity score. Demonstrating that the
propensity score achieves balance is more important
than showing that the propensity score model has
good discrimination (e.g., the c-statistic or area un-
der the receiver operating characteristic curve).

Balance means that the distribution of the fac-
tors is the same for treated and untreated patients

with the same propensity score. There are a num-
ber of ways to assess and demonstrate balance using
either matching, stratification or inverse probabil-
ity treatment weighting (which will be discussed in
the next section). In the matching approach, each
treated patient is matched to an untreated patient
with the same propensity score. In the stratifica-
tion approach, the patients are divided into groups
based on quantiles of propensity scores (e.g., often
quintiles of propensity scores are used). Then the
differences in covariates between matched pairs of
patients or within each strata are examined. If im-
portant imbalances are found, the propensity score
should be modified by including additional factors,
interactions between factors of interest, or non-
linear effects for continuous factors. Thus develop-
ing a propensity score is an iterative process.

Of note, tests of statistical significance are not
the best approach to examining balance, instead the
magnitude of differences between the treated and
untreated patients with similar propensity scores
should be examined. P-values from significance
tests are influenced by sample size and in the case
of matching, sometimes trivial differences will yield
high statistical significance. The recommended ap-
proach is to examine standardized differences (de-
fined as the difference in treated and untreated
means for each factor divided by the pooled stan-
dard deviation). The threshold used to demonstrate
balance is not well defined, but it has been suggested
that standardized differences <0.1 are sufficient [1].

2.3 Using the propensity score

Once the propensity score has been developed
and balance has been shown, several different ap-
proaches have been used to examine the question
of interest (i.e., does the factor of interest influence
the outcome after accounting for confounders?). In
fact, both conditional approaches (i.e., stratifica-
tion, model adjustment) and marginal approaches
(i.e., matching and re-weighting) have been used in
conjunction with propensity scores as methods to
account for confounders.

As mentioned previously, each adjustment
method has limitations, which are still applicable
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Figure 3: Three scenarios for hypothetical studies comparing the probability of treatment
for patients who were untreated (left peak) with those who were treated (right peak) with
a small range of probabilities where patients can receive either treatment (left column),
no overlap in probabilities between those who do and do not receive treatment (middle
column) and good overlap between the untreated and treated groups (right column).

when adjusting for propensity scores. Many reports
comparing various methods have been published
[1]. Stratification can result in estimates of aver-
age treatment effect with greater bias than some of
the other methods [14]. Using the propensity score
as an adjustor may not adequately separate the ef-
fect of the confounders from the treatment effect.

Matching on the propensity score often omits a sig-
nificant portion of the cohort for whom no matches
are possible, in the case where people with certain
values always or never receive a particular treat-
ment. These issues are discussed further by Austin
[1] and Kurth [11].

3 Inverse probability weighting

Inverse probability weighting (IPW) is a method
where data is weighted to balance the representa-
tion of subgroups within the full data set. In IPW,

each observation is weighted by the reciprocal (i.e.,
the inverse) of the predicted probability of being
in the group that was observed for each patient.

50–59 60–69 70–79 80+ Total
Group 1 2592 (47) 1693 (30) 972 (17) 317 ( 6) 5574
Group 2 444 (29) 448 (29) 425 (28) 216 (14) 1533
Group 3 121 (16) 188 (25) 226 (29) 232 (30) 767

Total 3157 2329 1623 765 7874

Table 1: Comparison of the age distributions for each of the three groups, along with the
row percentages.
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This method is commonly used in survey sampling
[9]. The important issues to consider when assign-
ing weights are whether balance is achieved, what
is the population of interest, and how big are the
weights.

We will return to the FLC example to demon-
strate the importance of these issues (see Table 1).
Restating the three aims for this data set, weights
should be chosen so that

1. The weighted age/sex distribution is identical
for each FLC group

2. The overall weighted age/sex distribution
matches that of the original population, sub-
ject to the prior constraint.

3. Individual weights are “as close as possible”
to 1, subject to the prior 2 constraints.

Point 1 is important for unbiasedness, point 2 for
ensuring that comparisons are relevant, and point 3
for minimizing the variance of any contrasts and re-
ducing potentially undue influence for a small num-
ber of observations. For simplicity we will illustrate
weights using only age, dividing it into the three
coarse groupings shown in table 1.

First we try assigning IPW based on the over-
all probablilty wij = 1/P (age = i, FLC = j). For
the 50–59 age group and the first FLC stratum the
probability is 2592/7874, the total count in that cell
divided by n, and the weight is 7874/2592= 3.

The results are shown in table 2, with weights
shown in the upper half of the table and the new,
reweighted table of counts in the lower portion. This
achieves balance (trivially) as the reweighted are
the same size for each age/FLC group. However,
the weighted sample no longer reflects the popula-
tion of interest, as now each age group is equally
weighted, whereas the actual Olmsted County pop-
ulation has far more 50 year olds than 80 year olds.
This approach gives the correct answer to a ques-
tion nobody asked: “what would be the effect of
FLC in a population where all ages were evenly dis-
tributed”, that is, for a world that doesn’t exist. In
addition, the individual weights are both large and
highly variable.

Age Group
50–59 60–69 70–79 80+

Weights
FLC 1 3.0 4.7 8.1 24.8
FLC 2 17.7 17.6 18.5 36.5
FLC 3 65.1 41.9 34.8 33.9

Reweighted Count
FLC 1 7874 7874 7874 7874
FLC 2 7874 7874 7874 7874
FLC 3 7874 7874 7874 7874

Table 2: Inverse probability weights
based on the total sample size. The
upper panel shows the weights and
the lower panel shows the table of
weighted counts. Counts for the
three FLC groups are balanced with
respect to age, but the overall age
distribution no longer matches the
population and individual weights
are far from 1.

In our second attempt at creating weights, we
weight the groups conditional on the sample size
of each age group, i.e., wij = 1/P (FLC=j | age =i);
The probability value for a 50–59 year old in the first
FLC group is now 2592/3157. Results are shown in
Table 3. This method still achieves balance within
the FLC groups, and it also maintains the relative
proportions of patients in each age group — note
that the reweighted counts are the column totals of
the original table 1. This is the method used for the
curves in the right panel of figure 2, but based on
16 age/sex strata. The weighted sample reflects the
age composition of a population of interest. How-
ever, the weights are still quite large and variable.
There is a natural connection between these weights
and logistic regression models: define y = 1 if a sub-
ject is in FLC group 1 and 0 otherwise; then a lo-
gistic regression of y on age and sex is an estimate
of P (FLC group =1 | age and sex), the exact value
needed to define weights for all the subjects in FLC
group 1.
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Age Group
50–59 60–69 70–79 80+

Weights
FLC 1 1.2 1.4 1.7 2.4
FLC 2 7.1 5.2 3.8 3.5
FLC 3 26.1 12.4 7.2 3.3

Reweighted Count
FLC 1 3157 2329 1623 765
FLC 2 3157 2329 1623 765
FLC 3 3157 2329 1623 765

Table 3: Inverse probability weights
normalized separately for each age
group. The upper panel shows the
weights and the lower panel shows
the total count of reweighted obser-
vations. Each FLC group is bal-
anced on age and the overall age dis-
tribution of the sample is retained.

The third set of weights retains both balancing
and the population distribution while at the same
time creating an average weight near 1, by balanc-
ing on both margins. These are defined as wt =
P(FLC=i) P(age=j) / P(FLC=i and age=j). The
formula is familiar: it is the reciprocal of the ob-
served:expected ratio from a Chi-square test (i.e.,
E/O). The resultant weights for our simple exam-
ple are shown in Table 4. These weights are often
referred to as “stabilized” in the MSM literature.

In practice, there will be multiple confounding
factors, not just age, so modeling will be needed to
determine the IPW. As mentioned in the previous
section, propensity scores are designed to balance
the treated and untreated groups on the factors that
confound the effect of treatment on an outcome, and
one way to use a propensity score to account for con-
founding in the model of the outcome is to use IPW.
In IPW, each observation is weighted by the recipro-
cal (i.e., the inverse) of the predicted probability of
receiving the treatment that was observed for each
patient, which can be estimated using propensity
scoring. Note that all the predicted probabilities
obtained from the propensity model, p, will be the
probabilities of receiving treatment. The reciprocal

of these values, 1/p will be the inverse probability
weights for patients who were treated. If there are
multiple groups a separate model can be fit with
each group taking its turn as ’y’ =1 with the oth-
ers as 0 to get the probabilities for observations in
that group, or a single generalized logistic regres-
sion fit which allows for a multinomial outcome. (If
there are only two groups, the common case, only
one logistic regression is needed since the fit predicts
both the probability p of being in group 1 and that
of “not group 1” = 1 − p = group 2.)

Age Group
50–59 60–69 70–79 80+

Weights
FLC 1 0.9 1.1 1.3 1.9
FLC 2 1.5 1.1 0.8 0.8
FLC 3 2.8 1.3 0.8 0.4

Reweighted Count
FLC 1 2455 1811.1 1262.1 594.9
FLC 2 675.2 498.1 347.1 163.6
FLC 3 337.8 249.2 173.7 81.9

Table 4: Stabilized inverse probabil-
ity weights, which achieve balance
between the FLC groups, maintain
the proportion of patients in each
age group to reflect the population of
interest, and also maintain the origi-
nal sample size in the weighted sam-
ple to avoid inflated variance issues.
The upper panel shows the weights
and the lower panel shows the sum
of the weights.

With the appropriate weights, the weighted
study population will be balanced across the treat-
ment groups on the confounding factors. This bal-
ance is what allows for unbiased estimates of treat-
ment effects in randomized controlled trials, thus
IPW can be thought of as simulating randomization
in observational studies.

One problem with IPW is that the weights can
have a large standard deviation and a large range
in practice. IPW often produces an effective sample
size of the weighted data that is inflated compared
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to the original sample size, and this leads to a ten-
dency to reject the null hypotheses too frequently
[24]. Stabilized weights (SWs) can be used to re-
duce the Type 1 error by preserving the original
sample size in the weighted data sets. The pur-
pose of stabilizing the weights is to reduce extreme
weights (e.g., treated subjects with low probability
of receiving treatment or untreated patients with
high probability of receiving treatment). The stabi-
lization is achieved by the inclusion of a numerator
in the IPW weights. When defining weights based
on propensity scoring (i.e., using only baseline co-
variates to determine the probability of treatment),
the numerator of the stabilized weights is the over-
all probability of being treated for those who were
treated and of not being treated for those who were
not treated [24]. So the formula for SW is then P/p
for the treated and (1−P )/(1−p) for the untreated,
where P is the overall probability of being treated
and p is the risk factor specific probability of treat-
ment obtained from the propensity score for each
patient.

It is also important to verify that the mean of
the SW is close to 1. If the mean is not close to 1,
this can indicate a violation of some of the model
assumptions (which will be discussed in a later sec-
tion), or a misspecification of the weight models [20].

Because extreme weights can occur in IPW and
such weights have an untoward influence on the re-
sults, weight truncation is commonly used with IPW
and SW. Various rules for truncation have been ap-
plied. One common approach is to reset the weights
of observations with weights below the 1st percentile
of all weights to the value of the 1st percentile and
to reset the weights above the 99th percentile of
all weights to the value of the 99th percentile. Of
course, other cutoffs, such as the 5th and 95th per-
centiles can also be used. Another approach is to
reduce the weights that are >20% of the original
sample size to some smaller value, and then adjust
all the weights to ensure they sum to the original
sample size. There is a bias-variance trade off as-
sociated with weight truncation, as it will result in
reduced variability and increased bias.

4 Marginal structural models

Up to this point, we have primarily focused
on adjustment for baseline confounding factors.
Marginal structural models (MSMs) are a class of
models that were developed to account for time-
varying confounders when examining the effect of
a time-dependent exposure (e.g., treatment) on a
long-term outcome in the presence of censoring.
Most of the common methods of adjustment can
be difficult or impossible in a problem this complex.
For example, in patients with human immunodefi-
ciency virus (HIV), CD4 counts are monitored reg-
ularly and are used to guide treatment decisions,
but are also the key measure of the current stage
of a patient’s disease. Not adjusting for CD4 leads
to invalid treatment comparisons; an aggressive and
more toxic treatment, for instance, may be preferen-
tially applied only to the sickest patients. However,
simply adjusting for CD4 cannot disentangle cause
and effect in a patient history containing multiple
treatment decisions and CD4 levels. MSMs were de-

veloped to tackle this difficult problem using IPW
methods to balance the treatment groups at each
point in time during the follow-up. This approach
is ”marginal” because the patient population is first
re-weighted to balance on potential confounders be-
fore estimating the treatment effect. These mod-
els involve development of time-varying propensity
scores, as well as methods to account for imbalances
due to censoring patterns.

An early variant of these models was developed
by Dr. Marian Pugh in her 1993 dissertation [16],
focused on the problem of adjusting for missing
data. The general approach was first published by
Drs. James Robins and Miguel Hernán from Har-
vard in 1999 [7][17]. A Harvard website provides
a SAS macro, %msm, for computing these models
[13]. The SAS macro uses an inefficient method
to compute the Cox models for the time-varying
propensity scores and for the outcome of interest,
because many standard Cox model software pro-
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grams do not allow for subject-specific time-varying
weights [7]. To circumvent this software limitation,
they use the methods of Laird and Olivier [12] and
Whitehead [21] to fit Cox models using pooled lo-
gistic regression models (see our example demon-
strating equivalence of these methods in Appendix
A). This method requires a data set with multiple
observations per subject corresponding to units of
time (e.g., months). Logistic regression models are
fit using this data set with time as a class variable
to allow a separate intercept for each time, which
mimics the baseline hazard in a Cox model. The
macro call for the %msm macro is quite complex
because the macro fits several models that all work
together to make the resulting MSM estimations.
These models include:

1. Two separate models for the numerators and
denominators of the stabilized case weights,
which are logistic regression models of the
probability of receiving the treatment (or of
having the factor of interest that you want to
balance on). As previously mentioned, the de-
nominator of the SW is often obtained using
propensity scoring and the numerator is of-
ten just the overall probability of treatment.
In MSMs there are time-varying propensity
scores which are fit using both baseline and
time-varying factors. The numerator is typ-
ically obtained from a model including only
the baseline factors. This is similar to strati-
fied randomization, which is often used to pre-
vent imbalance between the treatment groups
in key factors. Because the numerator and de-
nominator models share common factors, they
should be correlated, which should result in a
weight that is less variable than using only the
denominators. This approach is particularly
useful when large weights are a problem.

So for these models, the baseline or non-
varying factors influencing the treatment as-
signment (e.g. past treatment history) are in-
cluded in the numerator model and both the
baseline and the time-varying factors influenc-
ing the treatment decision are included in the
denominator model. The resulting predicted

probabilities obtained from the numerator and
denominator models are used to construct the
SW for each subject at each time point during
follow-up.

Once the patent initiates the treatment, the
rest of his/her observations are excluded from
these models, and his/her weights do not
change (i.e., the probability of initiating treat-
ment does not change once the patient is ac-
tually on the treatment). The model assumes
the patients are on (or are exposed to) the
treatment from the time of initiation of the
treatment until the last follow-up.

2. Censoring models are also available in the
%msm macro. There are two logistic regres-
sion models for the numerator and denomi-
nator of SW for censoring. The macro al-
lows up to 4 different sets of censoring mod-
els to model different types of censoring. For
these models, the binary outcome is censor-
ing of a particular type. The 2 most com-
mon types of censoring are administrative cen-
soring and lost-to-follow-up. Administrative
censoring occurs when subjects have complete
follow-up to the last available viewing date
(e.g., today or the last possible study visit or
the day the chart was abstracted). This type
of censoring is very common in Rochester Epi-
demiology Project studies. Lost-to-follow-up
censoring occurs when a subject is lost before
the end of the study. Many factors may in-
fluence this type of censoring, as perhaps the
subject has not returned due to an unrecorded
death, or perhaps they are now feeling well
and decided the study was no longer worth
participating in. If patients who are censored
differ from those who are still being followed,
the distribution of risk factors of interest will
change over time, which will introduce imbal-
ance with respect to the risk factors. The
models of censoring help to adjust for admin-
istrative or lost-to-follow-up censoring by as-
signing high weights to patients with a high
probability of censoring who were not actually
censored, so they will represent the patients
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who were censored. This is similar to the “re-
distribute to the right” weighting that occurs
in the Kaplan-Meier method of estimating the
probability of events occurring over time.

3. The final model is fit using a pooled logistic
regression model of the outcome of interest
(e.g., death) incorporating time-varying case
weights using the SW computed from the pre-
vious models. As with the other models, this
model is computed using the full data set in-
cluding an observation for each time period
for each subject. The SW used at each time
point is the product of the SW from the treat-
ment models and the SW from the censoring
models.

In addition to weighting the model by the case
weights, this model can also include additional
variables that may influence the outcome of
interest, which were not included in the mod-
els of the treatment assignment. The question
of including as adjustors the same variables
that were included in the models used to es-
tablish the weights is one that has received
much discussion (e.g., in the context of adjust-
ing for the matching factors in a case-control
study). If the case weights truly achieve bal-
ance, then there is no need to include them in
the model of the outcome of interest. How-
ever, the price of SWs is that the weighted
population may not be fully adjusted for con-
founding due to the baseline covariates used
in the numerator of the weights, so the final
model must include these covariates as adjus-
tors [4].

4.1 MSM assumptions

There are several key assumptions inherent in
MSMs: exchangeability, consistency, positivity and
that the models used to estimate the weights are

correctly specified [4]. The exchangeability assump-
tion has also been referred to as the assumption of
no unmeasured confounding. This is an important
assumption, but unfortunately it cannot be verified
empirically.

Consistency is another assumption that is diffi-
cult to verify. In this context, consistency means
that the observed outcome for each patient is the
causal outcome that results from each patient’s set
of observed risk factors. Note that this definition
differs from the usual statistical definition of consis-
tency that the bias of an estimator approaches zero
as the sample size increases.

Positivity, also known as the experimental treat-
ment assumption, requires that there are both
treated and untreated patients at every level of
the confounders. If there are levels of confounders
where patients could not possibly be treated, such
as the time period before a particular treatment ex-
isted, then this creates structural zero probabilities
of treatment. Contraindications for treatment can
also violate the positivity assumptions. The obvious
way to deal with these violations is to exclude peri-
ods of zero treatment probability from the data set.
However, if the problem occurs with a time varying
confounder, exclusions can be difficult.

A related issue is random zeroes, which are
zero probabilities resulting by chance usually due to
small sample sizes in some covariates levels can also
be problematic. Parametric models or combining
small subgroups can be used to correct this problem.
Weighted estimates are more sensitive to random
zeroes than standard regression models. And while
additional categories of confounders are thought to
provide better adjustment for confounding, the re-
sulting increase in random zeroes can increase the
bias and variance of the estimate effect. Sensitivity
analysis can be used to examine this bias-variance
trade off. It may be advantageous to exclude weak
confounders from the models to reduce the possibil-
ity of random zeroes.
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5 Example using %msm macro

Our example data set used the cohort of 813
Olmsted County, Minnesota residents with incident
rheumatoid arthritis (RA) in 1980-2007 identified
by Dr. Sherine Gabriel as part of her NIH grant
studying heart disease in RA [15]. Patients with RA
have an increased risk for mortality and for heart
disease. Medications used to treat RA may have
beneficial or adverse effects on mortality and heart
disease in patients with RA. However, the long-term
outcomes of mortality and heart disease have been
difficult to study in randomized clinical trials, which
usually do not last long enough to observe a suffi-
cient number of these long-term events. In addition,
observational studies of the effect of medications on
outcomes are confounded due to channeling bias,
whereby treatment decisions are based on disease
activity and severity. Therefore, MSMs might help
to separate the treatment effects from the effects
of disease activity and severity confounders on the
outcomes of mortality and heart disease.

Methotrexate (MTX) was approved for use in
treatment of RA in 1988, and is still the first line
treatment for RA despite the introduction of sev-
eral biologic therapies since 1999. In this cohort
of 813 patients with RA, 798 have follow-up after
1988 (mean age: 57 years). RA predominately af-
fects women in about a 3:1 female:male ratio (this
cohort is 69% female). The mean follow-up was 7.9
years (range: 0 to 28.6 years) during which 466 pa-
tients were exposed to MTX and 219 patients died.
The majority of censoring was for administrative
reasons (i.e., they were followed through today and
we need to wait for more time to pass to get more
follow-up). Very few patients were lost to follow-up.
Figure 4 shows the number of patients exposed to
MTX and not exposed to MTX who were under ob-
servation according to months since RA diagnosis.
This figure demonstrates that the proportion of pa-
tients exposed to MTX changes over time, as it was
low at the start of follow-up and it was nearly 50%
in the later months of follow-up.

5.1 Step 1 - Choosing time scale and
defining time, event and treatment
variables

The first step is to prepare the data set needed for
analysis. As with any time related analysis, the first
consideration is what time scale to choose for the
analysis. The most common time scales are time
from entry into the study or time from diagnosis.
Note that the %msm macro documentation states
that all subjects must start at time 0, but we could
not find any methodological reason for this asser-
tion, except that it is important to have a sufficient
number of patients under observation at time 0. In
these models, intercepts are estimated for each time
period (compared to time 0 as the reference time
period) by modeling time as a class variable.

Since our study population is an incidence co-
hort of patients with RA, the qualification criteria
for a patient to enter this study was RA diagno-
sis. Thus time 0 was when RA was first diagnosed.
Since the study cohort begins in 1980 and MTX
was not approved for RA until 1988, patients diag-
nosed prior to 1988 were entered into the model in
1988. Note that for this example once the patient
has been exposed to MTX they will be considered
in the treatment group, even if they stop taking the
drug.

Our example uses exposure to MTX (0/1 un-
exposed/exposed) for treatment and death (i.e.,
’died’) as the outcome variable. Time t (0, 1, 2,
3, . . . ) is the number of time periods since the pa-
tient entered the study. Other examples typically
use months as the time periods for running MSMs.
In our data set, this led to some computational is-
sues. We found that each of the models fit during
the MSM modeling process needs to have at least
one event and at least one censor during each time
period. This was also true for the reference time pe-
riod (time 0), which all other time periods were com-
pared to. In our example there were some long peri-
ods between events, so the time intervals we defined
were irregular. Issues like model convergence or ex-
treme model coefficient values often resulted from a
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Figure 4: This figure shows the number of patients who were exposed and not exposed
to methotrexate (MTX) according to months after RA diagnosis in a stacked area plot.
At 50 months after RA diagnosis, approximately 250 patients were exposed to MTX and
approximately 300 patients were not exposed to MTX for a total of approximately 550
patients under observation. This figure shows that the total number of patients under
observation is changing over follow-up time and that the proportion of patients who were
exposed to MTX changes over time, as the proportion of MTX exposed patients is low at
the start of follow-up and is around 50% in the later months of follow-up.

lack of events in a time period. We found that warn-
ings regarding “Quasi-complete separation of data
points” and “maximum likelihood estimate may not
exist” could be ignored since we were not interested
in the accuracy of the estimated intercepts for each
time period, and estimates for the coefficients of in-
terest were largely unaffected by these warnings. We
found the coefficients for each of the time periods
with no events were large negative numbers on the
logit scale (i.e., near zero when exponentiated) in-
dicating no information was added to the overall
model for the time periods with no events.

Because of problems with model convergence
due to months without events, we used irregular

periods of time that were sometimes several months
long. To determine the periods of time that would
work, we examined distributions of the event and
censoring times. Then starting with the first month
of follow-up, we grouped time periods together until
we had a minimum of 1 event and 1 censor in each
time period. Note that there are some other options
to improve computational issues without creating ir-
regular time periods, such as the use of cubic splines
to model the baseline hazard. This would make as-
sumptions about the functional form of the base-
line hazard function, so the results would no longer
match the Cox model results exactly, but it might
be easier and perhaps less arbitrary than defining
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irregular time periods. This is an issue for further
investigation and it will not be discussed further in
this report.

In addition, the patients were followed until
death, migration from Olmsted County or Decem-
ber 31, 2008. However, this resulted in small num-
bers of patients under observation at later time
points, so to avoid computational issues related to
small sample sizes, we chose to truncate follow-up
at 180 months after RA diagnosis.

At this point we created a data set with mul-
tiple observations per patient (i.e. one observation
for each time period), and we can define the event
variable and the treatment variable. In addition the
macro requires several other time and event related
variables. The time and event related variables we
used in the %msm macro were:

id patient id

censored indicator for alive at the last followup
date (0=died, 1=alive)

died indicator that the patient has died (1=died,
0=alive)

t time period (0, 1, 2, . . . )

exposed mtx indicator for exposure to MTX
(0=untreated, 1=treated)

eligible indicator for treatment eligibility (1=eli-
gible (prior to and in the time period where
MTX exposure starts), 0=ineligible (begin-
ning in the first time period after MTX expo-
sure starts). The macro sets the probability
of treatment (e.g., pA d and pA n) to 1 after
exposure begins.

The programming for the data setup for the %msm
macro was complicated due to the large number of
time-varying factors included in the model, and the
irregular time periods that were used to facilitate
computations. Thus we have not provided code for
constructing the full data set, but we have provided
an example of the data set structure that was used

with the macro. Table 5 shows a small sample of
what the data set looks like so far.

5.2 Step 2 - Choosing and defining vari-
ables for treatment, censoring and fi-
nal models

The next step is to choose the variables of interest
for each of the models involved in the MSM process.
You may want to review the section on variable se-
lection for propensity scoring and also consult your
investigator to help determine which variables may
be related to both treatment assignment and out-
come, as well as what factors may influence censor-
ing in your study.

In our example, we first tried to include all pa-
tients diagnosed with RA since 1980 in our mod-
els beginning at time 0, which was RA diagnosis.
However, MTX was introduced in 1988, so patients
diagnosed prior to 1988 could not receive MTX in
the time periods prior to 1988. At first we added an
indicator variable for whether MTX had been intro-
duced or not. This led to problems with positivity,
as the probability of receiving MTX prior to its in-
troduction was zero. This violation of an assump-
tion of the MSM models led to extreme weights.
Thus we excluded time periods prior to the intro-
duction of MTX in 1988 for the patients who were
diagnosed with RA prior to 1988.

We also started with a longer list of variables of
interest, which we shortened to keep this example
simple. So here is the list of baseline and time-
dependent variables we will use in this example:

� baseline factors

age Age in years at RA diagnosis

male sex indicator (0=female, 1=male)

rfpos indicator for rheumatoid factor positiv-
ity (0=negative, 1=positive)

smokecb indicator for current smoker

smokefb indicator for former smoker

yrra calendar year of RA diagnosis

� time-varying factors
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id t eligible died age male yrra exposed mtx
1 0 1 0 26 0 1988 0
1 1 1 0 26 0 1988 0

2 0 1 0 45 0 2001 0
2 1 1 0 45 0 2001 0
2 2 1 0 45 0 2001 0
2 3 1 0 45 0 2001 0
2 4 1 0 45 0 2001 0
2 5 1 0 45 0 2001 0
2 6 1 0 45 0 2001 1
2 7 1 0 45 0 2001 1

3 0 1 0 84 0 1989 0
3 1 1 0 84 0 1989 0
3 2 1 0 84 0 1989 0
3 3 1 1 84 0 1989 0

4 0 1 0 54 1 1993 1
4 1 0 0 54 1 1993 1
4 2 0 0 54 1 1993 1
4 3 0 0 54 1 1993 1
4 4 0 0 54 1 1993 1
4 5 0 0 54 1 1993 1
4 6 0 0 54 1 1993 1

Table 5: A sample of the data set structure for the rheumatoid arthritis example (see Step
1).
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cld indicator for chronic lung disease
dlip indicator for dyslipidemia
dmcd indicator for diabetes mellitus
hxalc indicator for alcohol abuse
erosdest indicator for erosions/destructive

changes
ljswell indicator for large joint swelling
nodul indicator for rheumatoid nodules
esrab indicator variable for abnormal ery-

throcyte sedimentation rate
exra sev indicator for extra-articular mani-

festations of RA
hcq indicator for exposure to Hydroxy-

chloroquine
othdmard indicator for exposure to other

disease modifying anti-rheumatic medi-
cations

ster indicator for exposure to glucocorticos-
teroids

These variables need to be added to the data
set described in the previous section. Note that

baseline variables should have the same value for all
observation for each patient. The time-dependent
variables in our example data set are all absent/p-
resent variables, which are defined as 0 prior to
the development of each characteristic, and they
change to 1 when the characteristic develops and
remain 1 for the remaining observation times. Note
that continuous time-varying variables (e.g., systolic
blood pressure) can also be defined, and these vari-
ables would typically change value whenever they
are re-measured during follow-up. Note also that
time-dependent variables should be defined at the
start of each time period. Typically a new time
interval would be started when the value of a time-
dependent variable needs to be changed, but that
may not be possible in this instance due to the com-
putational issues mentioned in the previous section.

5.3 Step 3 - Calling the %msm macro

Once the data set is ready and the variables to use
in each model have been chosen, then it is time to
call the macro. Here is the macro call corresponding
to our example data set:

%msm(

data=ra_mtx_msm ,

id = id,

time = t,

/* Structural Model Settings */

outcMSM = died ,

AMSM = exposed_mtx ,

covMSMbh = t ,

classMSMbh= t,

covMSMbv= age male yrra rfpos smokecb smokefb ,

/* Settings for treatement and possible censoring weight models*/

A = exposed_mtx ,

covCd = t age male yrra rfpos smokecb smokefb

esrab erosdest_ exra_sev_ hcq_

othdmard_ ster_ cld_ nodul_ ljswell_

dmcd_ hxalc_ dlipcd_ ,

classCd = t,

covCn = t age male yrra rfpos smokecb smokefb ,

classCn = t,

covAd = t age male yrra rfpos smokecb smokefb esrab erosdest_

exra_sev_ hcq_ othdmard_ ster_ cld_ nodul_ ljswell_

dmcd_ hxalc_ dlipcd_,

classAd = t,
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covAn= t age male yrra rfpos smokecb smokefb ,

classAn= t ,

eligible= eligible ,

cens = censored ,

/* Data analysis settings */

truncate_weights=1,

msm_var=1,

use_genmod=0,

/* Output Settings */

libsurv=out_exp ,

save_results = 1,

save_weights = 1,

debug=0,

/* Survival curves and cumulative incidence settings */

survival_curves = 1,

use_natural_course=1,

bootstrap=0,

treatment_usen = exposed_mtx ,

treatment_used = exposed_mtx ,

time_start=0,

time_end =120

);

Note that the lists of numerator variables for the
treatment and censoring models include only the
baseline variables. The numerators of the weights
are used to stabilize the weights, and only baseline
variables are included in these models by conven-
tion. See a previous section for more discussion of
these issues.

Now it is time to run the macro. While the
macro performs all steps of the model process at
once (if it runs correctly) it is important to look at
each step one-by-one, so we will examine each step
individually in the next few sections.

5.4 Step 4 - Examining the treatment
models

The model for the denominator of the treatment
weights is arguably the most important model in
the determination of the weights. This model should
be examined to be sure the directions of the coeffi-
cients make sense in the medical context of the study
(i.e., factors that increase the probability of receiv-
ing treatment have positive coefficients and factors

that decrease the probability of receiving treatment
have negative coefficients). The coefficients for the
baseline variables in the model for the numerator of
the weights may or may not agree closely with the
coefficients of these same variables in the denomina-
tor model, depending on how the time-varying vari-
ables may have impacted the model. Table 6 sum-
marizes the results of the treatment weight models
for our example data set.

5.5 Step 5 - Examining the censoring
models

The next step is to examine the censoring models.
As most of the censoring in our example data set was
administrative, the majority of factors in the model
are unrelated to censoring, with the exception of
factors indicative of time (e.g., yrra, age). Table 7
summarizes the results of the censoring weight mod-
els.
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Model for Denominator of Stabilized Weights, MTX Exposure
Parameter DF Estimate Std Err Wald Chi-Sq Pr >ChiSq
Intercept 1 -133.9 20.0872 44.4173 <.0001
age 1 -0.0268 0.00395 46.0334 <.0001
male 1 -0.0573 0.1207 0.2256 0.6348
yrra 1 0.0658 0.0100 43.0049 <.0001
rfpos 1 0.9003 0.1314 46.9777 <.0001
smokecb 1 0.1273 0.1487 0.7326 0.3920
smokefb 1 0.1433 0.1247 1.3212 0.2504
erosdest 1 0.8361 0.1149 52.9355 <.0001
exra sev 1 -0.0729 0.2388 0.0932 0.7602
hcq 1 0.0297 0.1143 0.0676 0.7948
othdmard 1 0.4644 0.1453 10.2169 0.0014
ster 1 0.9093 0.1194 57.9615 <.0001
cld 1 0.1345 0.1342 1.0043 0.3163
nodul 1 0.2334 0.1314 3.1562 0.0756
ljswell 1 0.3500 0.1210 8.3587 0.0038
dmcd 1 0.2178 0.1680 1.6807 0.1948
hxalc 1 -0.4271 0.2209 3.7364 0.0532
dlipcd 1 0.2405 0.1170 4.2263 0.0398
esrab 1 0.5432 0.1164 21.7762 <.0001
Time variables not shown.

Model for Numerator of Stabilized Weights MTX Exposure
Parameter DF Estimate Std Err Wald ChiSq Pr >ChiSq
Intercept 1 -123.8 18.3873 45.2986 <.0001
age 1 -0.0138 0.00354 15.1999 <.0001
male 1 0.0406 0.1119 0.1319 0.7165
yrra 1 0.0610 0.00919 44.1148 <.0001
rfpos 1 1.0258 0.1255 66.8070 <.0001
smokecb 1 0.0554 0.1384 0.1600 0.6892
smokefb 1 0.1123 0.1204 0.8708 0.3507
Time variables not shown.

Table 6: Treatment Models (see Step 4).
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Model for Denominator of Stabilized Weights - Censoring
Parameter DF Estimate Std Err Wald ChiSq Pr >ChiSq
Intercept 1 1781.9 81.5345 477.6382 <.0001
exposed mtx 1 -0.0120 0.1223 0.0096 0.9219
age 1 0.00714 0.00405 3.1016 0.0782
male 1 0.0122 0.1163 0.0109 0.9167
erosdest 1 0.1464 0.1143 1.6404 0.2003
exra sev 1 0.1323 0.1943 0.4635 0.4960
yrra 1 -0.8860 0.0406 475.2877 <.0001
hcq 1 0.0459 0.1140 0.1619 0.6874
othdmard 1 -0.0696 0.1333 0.2728 0.6015
ster 1 0.0340 0.1367 0.0620 0.8034
rfpos 1 -0.00719 0.1194 0.0036 0.9520
cld 1 -0.0811 0.1357 0.3569 0.5503
nodul 1 -0.1512 0.1243 1.4782 0.2241
ljswell 1 -0.0306 0.1268 0.0583 0.8092
dmcd 1 -0.1266 0.1478 0.7344 0.3914
hxalc 1 0.1394 0.2101 0.4405 0.5069
dlipcd 1 -0.0342 0.1201 0.0810 0.7759
smokefb 1 0.1300 0.1243 1.0944 0.2955
smokecb 1 0.1144 0.1545 0.5481 0.4591
esrab 1 0.2394 0.1437 2.7758 0.0957
Time variables not shown.

Model for Numerator of Stabilized Weights - Censoring
Parameter DF Estimate Standard Error Wald Chi-Square Pr >ChiSq
Intercept 1 1761.7 80.5099 478.8203 <.0001
exposed mtx 1 -0.00056 0.1109 0.0000 0.9959
age 1 0.00865 0.00359 5.7903 0.0161
male 1 -0.0198 0.1128 0.0308 0.8607
yrra 1 -0.8759 0.0401 476.4679 <.0001
rfpos 1 0.00876 0.1153 0.0058 0.9395
smokecb 1 0.1420 0.1440 0.9734 0.3238
smokefb 1 0.1256 0.1200 1.0953 0.2953
Time variables not shown.

Table 7: Censoring models (see Step 5).
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Figure 5: The distribution of weights at approximately 12 month intervals (see Step 6).

5.6 Step 6 - Examining the weights

The stabilized weights for treatment are computed
by obtaining the predicted probabilities from the
numerator and denominator models for each obser-
vation in the data set and then dividing these. This
work is done by the macro. Note that once a patient
is exposed to the treatment, both the numerator and
the denominator are set to 1 for the remaining time
periods, resulting in weights of 1.

The stabilized weights for censoring are com-
puted by obtaining the predicted probabilities from
the numerator and denominator models for each ob-
servation in the data set and then dividing these.
This work is also done by the macro. Then the
censoring weights are multiplied with the treatment
weights to obtain the weights used in fitting the final
model.

The treatment weights adjust for imbalances in
the characteristics of the treated and untreated pa-
tients, and the censoring weights adjust for imbal-
ances in the study population that develop over
time.

When developing weighting models, it is impor-
tant to visually inspect the individual weights being
created. In some instances a poor performing co-
variate will cause many extreme weights to be cre-

ated. Note that the macro also has an option for
truncating extreme weights, but if many patients re-
ceive extreme weights it is important to understand
why and to check model setup issues.

It is also important to verify that the mean of
the stabilized IPW is close to 1. If the mean is not
close to 1, this can indicate a violation of some of
the model assumptions (e.g., positivity), or a mis-
specification of the weight models [20]. It is also
important to verify that the sum of the weights is
close to the actual sample size.

Figure 5 shows the distribution of the truncated
stabilized weights, sw, over time. The mean (*)
and the median (middle horizontal bar) and quar-
tiles (horizontal box edges) are shown. The weights
in the box plot were truncated below the 1st per-
centile and above the 99th percentile. The smallest
actual weight using %msm was 0.15 and largest was
27.7. The weights were truncated to reduce vari-
ance as described in section 3. Notice the means
and medians of the weights are reasonably close to
1.

5.7 Step 7 - Examining balance

The next step is to examine whether the inverse
probability weights have resulted in balanced data
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for the important factors confounding the treatment
effect and the outcome. While data balance is of-
ten examined when using propensity scoring, it is
often ignored in the MSM literature, likely due to
the complexity of the time-varying weighting. In
our example data we examined plots of the median
covariate values in the treated and untreated groups
over time both in the original and in the weighted
data sets. If balance is improved with weighting, the
central tendency of the covariate values should be
closer together in the weighted data set. If balance
is achieved, the treated and untreated lines should
coincide.

Figure 6 below show the unweighted and
weighted average age for patients exposed to MTX
and not exposed to MTX. While the weighted me-
dian ages do not seem to be much closer together
than the unweighted median ages, it is important
to note that the age distributions of treated and
untreated patients were largely overlapping and did
not differ greatly to begin with. Despite this, we
were a bit surprised that the age distributions did
not appear to get closer together in the weighted
sample. This could potentially indicate that we
should spend more time trying to accurately model
the age effect by considering non-linear age effects
or interactions between age and other factors, such
as sex.

Figure 7 show the unweighted and weighted pro-
portions of patients with various characteristics in
the treated and untreated groups. Notice that the
weighted proportions tend to be closer together than
the unweighted proportions.

5.8 Step 8 - The final model

The next step is fitting the final model to examine
the estimated effect of the treatment on the out-
come after applying weights to adjust for confound-
ing factors. Note that the macro refers to the final
model as the “structural” model, but we find that
terminology a bit confusing, so we will refer to it as
the “final” model. Table 8 summarizes the outcome
model.

The adjusted odds ratio is 0.83 from the MSM,
and indicates MTX has no statistically significant

effect on mortality in patients with RA. The unad-
justed odds ratio from Appendix A, 0.676 (95% CI:
0.515, 0.888), indicates patients exposed to MTX
experienced improved survival. However, this ap-
parent protective effect of MTX on mortality may
have been due to confounding, since we no longer
see this effect in the adjusted analysis. Also of note,
the confidence intervals from the MSM analysis are
quite wide (i.e., 95% CI: 0.56, 1.23).

Due to concerns regarding the possible over-
inflation of the variance in the weighted final model,
bootstrap variance estimation is recommended once
the model is finalized. In fact, bootstrapping is a
default setting in the macro call, but it is time-
consuming and produces a great deal of output (e.g.,
>4000 pages in our example). Table 9 summa-
rizes the outcome model obtained using bootstrap-
ping. Note that the confidence intervals obtained
using the bootstrap method are slightly narrower,
.058–1.19.

The macro also provides estimates of the abso-
lute treatment effect over time, in the form of sur-
vival plots. Figure 8 shows 3 survival curves gener-
ated by the %msm macro: with treatment, without
treatment and natural course. The treated and un-
treated curves are obtained using the re-weighted
study population, so these 2 curves can be com-
pared to each other and their difference provides
a visual representation of the absolute magnitude
of the treatment effect. The natural course sur-
vival curve is obtained by fitting the final model
without the treatment weight or the treatment in-
dicator. The censoring weights are still applied to
correct for any changes over time in the study pop-
ulation. So this curve represents what is currently
happening in a study population with the character-
istics and treatment patterns of the original study
population, if all subjects were followed for entire
study period. Since the natural course curve de-
picts the survival experience of the original study
population, instead of the re-weighted study pop-
ulation, it is not comparable to the untreated and
treated curves. Also of note, in our example the nat-
ural course curve is below both the untreated and
the treated curves. Intuitively, the natural course
should be between the treated and untreated curves,
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Figure 6: The distribution of median age over time in treated and untreated groups in the
original data set (upper panel) and the weighted data set (lower panel) (see Step 7).
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treated and untreated groups. (see Step 7).
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Name Estimate Std LB UB Z P Value
Intercept 35.9350 31.906 -26.60 98.47 1.1263 0.2601
exposed mtx -0.1838 0.201 -0.58 0.21 -0.9126 0.3615
age 0.1254 0.009 0.11 0.14 13.5427 <.0001
male -0.0718 0.176 -0.42 0.27 -0.4070 0.6840
yrra -0.0257 0.016 -0.06 0.01 -1.6044 0.1086
rfpos 0.5997 0.188 0.23 0.97 3.1973 0.0014
smokecb 1.3954 0.236 0.93 1.86 5.9154 <.0001
smokefb 0.7453 0.216 0.32 1.17 3.4560 0.0005
Time variables not shown.

Table 8: Final outcome model (see Step 8).

95% 95%
Variable Est Bias Std Err lower upper Pr > |Z|
Intercept 35.93 -17.01 51.45 -64.92 136.7 0.48
exposed mtx -0.18 -0.02 0.18 -0.54 0.1 0.31
age 0.12 -0.00 0.01 0.10 0.1 <.0001
male -0.07 -0.03 0.16 -0.38 0.2 0.65
yrra -0.02 0.01 0.02 -0.07 0.0 0.31
rfpos 0.59 -0.01 0.25 0.10 1.0 0.01
smokecb 1.39 -0.08 0.24 0.90 1.8 <.0001
smokefb 0.74 -0.02 0.30 0.15 1.3 0.01
Time variables not shown.

Table 9: Final model with bootstrap errors. (Note that excessive digits were trimmed
from the output to fit it on the page.) (See Step 8).

and this would be the case the same study popula-
tion was used to draw all 3 curves. However, since
the treated and untreated curves are obtained using
the re-weighted study population and the natural
course is obtained using the original study popula-
tion, these curves are not comparable. The utility
of the natural course curve is questionable and it
does not appear in any published results using this

methodology to our knowledge. We describe it here
because it is part of the macro output.

Figure 9 shows the survival curve estimates us-
ing the bootstrap. Note the confidence intervals for
the survival estimates are quite wide in this exam-
ple. For example, the confidence intervals span more
than 20% in each group by 100 months after RA di-
agnosis.

6 Counterfactuals

Much of the literature on MSMs focuses on coun-
terfactuals and causal effects. Using counterfactu-
als to explain MSMs can be confusing. The context
for counterfactuals is that the ideal, hypothetical
study would be to observe all the study subjects
under both conditions (e.g., both treated and un-

treated, or both exposed and unexposed), and then
the true causal effect would be the difference be-
tween the outcomes when the same set of patients
were exposed and when they were unexposed. The
average of the individual causal effects across the
entire population is often referred to as the Aver-
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Figure 8: The survival curve estimates using the survival with and without treatment
obtained using the re-weighted population and the natural course obtained using the orig-
inal study population. Comparison of the treated and untreated curves provides a visual
representation of the absolute treatment effect. The comparability of the natural course
to the other curves is questionable.

age Causal Effect (ACE). In reality, each patient
can only be exposed or unexposed; it is rarely pos-
sible to examine the same patients under both con-
ditions. Even in a cross-over situation, there may be
differences due to which order the treatments / ex-
posures are experienced. The counterfactual refers
to the unobserved state for each patient, so if the
patient was treated, then the counterfactual is the
outcome that would have occurred if the patient was
not treated. Since we can rarely observe the same

patients under both conditions, the only way to de-
termine causal effects is to compare two groups that
are identical in every way except that one group was
treated and the other was not, which occurs when
patients are randomly assigned to treatments and
is referred to as exchangeability. MSMs attempt
to fully adjust for confounders to simulate random-
ization and achieve balance and exchangeability in
order to estimate causal effects.

7 Practical considerations

MSMs are time-consuming, as they require care-
fully fitting several different models for exposure,
censoring and then the outcome of interest. Model
modifications may be needed to achieve balance and
to achieve a reasonable distribution of weights. In
addition, sensitivity analyses are required to exam-

ine the effect of model assumptions. It may be nec-
essary to fit several different variations of each of
the models included in the MSM to see how the
result is affected by modifying these models. Pub-
lished papers reporting MSMs typically include re-
sults from several sensitivity analyses to strengthen
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Figure 9: The survival curve with 95% confidence intervals estimated using the bootstrap
(see Step 8).

the findings enough to convince skeptical readers by
demonstrating stability of the estimated effect un-
der various choices of model specifications.

Finally, the complexities of MSMs result in vari-
ances that are typically 20% higher than the vari-

ance in the original unadjusted model of treatment
effect. Thus, this methodology requires adequate
sample size to allow for a conclusive result in the
face of this larger variance.[20]

8 Additional information

For more information on marginal structural
models, examine the following references.

� The Basics of MSM [17]

� A medical example using MSM [7]

� Adjusted survival curves [3]

� More details/depth [8]

� Checking balance [6] [2]

� Pooled logistic regression models [12] [21]

� Propensity scores [19] [1]

� G-computation, an alternative to inverse
probability weighting [22]

R users may want to investigate the ipw pack-
age [23] [22]. Work is underway to implement the
MSM methods using the R survival library. A pa-
per how using Stata to fit a Marginal Structural
Model is available on the Harvard website (http:
//www.hsph.harvard.edu/causal/).
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Appendices

A Pooled logistic vs. Cox model

As previously mentioned, the %msm macro uses pooled logistic regression models instead of Cox models
to estimate the weights and also to model the long-term outcome. Pooled logistic regression models are
equivalent to Cox models, and the theory demonstrating this fact was published by Laird and Olivier [12]
and Whitehead [21]. The logistic regression models are fit using a data set with multiple observations
per subject corresponding to units of time (e.g., months), and time is fit as a class variable to allow a
separate intercept for each time. The separate intercepts for each unit of time mimic the baseline hazard
in a Cox model.

Here is a simple example demonstrating how to create a data set with an observation for each month
for each patient. The time interval for each observation ranges from t to tstop=t+1, and the exposed mtx
variable is a time-dependent covariate with the value of 0 prior to exposure to methotrexate, which changes
to 1 at the start of exposure to methotrexate and remains 1 until the end of follow-up.

data ra;

set <dataset >;

tmlfu=lfudt -indexdt;

tmmtx=mtx1dt -indexdt;

keep id tmlfu dead tmmtx t tstop exposed_mtx;

maxmonths=floor(tmlfu/30);

exposed_mtx =0;

do t=0 to maxmonths;

if maxmonths =0 then do;

if tmmtx ^=. then exposed_mtx =1;

end;

else if . < tmmtx < tmlfu*(t+1)/maxmonths then exposed_mtx =1;

tstop=t+1;

output;

end;

run;

When we compare the results of the pooled logistic model and the Cox model run on this data set,
they are very similar, as expected.

**Cox model using monthly dataset created above**;

proc phreg;
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model (t,tstop)*dead (0)= exposed_mtx/rl ties=efron;

run;

Cox model
Parameter DF Parameter Estimate Standard Error Chi-Square Pr >ChiSq
exposed mtx 1 -0.38848 0.13831 7.8898 0.0050

95% Hazard Ratio
Parameter Hazard Ratio Confidence Limits
exposed mtx 0.678 0.517, 0.889

**pooled logistic regression model using time in months as a class variable**;

proc logistic des;

class t/ref=first;

model dead=exposed_mtx t/rl;

run;

Logistic
Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr >ChiSq
Intercept 1 -10.1760 10.2381 0.9879 0.3203
exposed mtx 1 -0.3916 0.1390 7.9370 0.0048
t1 1 -4.5914 59.0956 0.0060 0.9381
t2 1 3.5533 10.2865 0.1193 0.7298
t3 1 -4.5744 59.2558 0.0060 0.9385
t4 1 -4.5705 59.2959 0.0059 0.9386
t5 1 3.5748 10.2865 0.1208 0.7282
t6 1 3.5851 10.2865 0.1215 0.7274
t7 1 -4.5583 59.4850 0.0059 0.9389
t8 1 4.6986 10.2542 0.2100 0.6468
t9 1 3.6062 10.2865 0.1229 0.7259
t10 1 3.6135 10.2865 0.1234 0.7254
Remaining Time variables not shown.
t339 1 -3.5949 593.1 0.0000 0.9952
t340 1 -3.5851 681.5 0.0000 0.9958
t341 1 -3.5851 681.5 0.0000 0.9958
t342 1 9.8745 10.3109 0.9171 0.3382
t343 1 -3.5751 830.5 0.0000 0.9966
t344 1 -3.5751 830.5 0.0000 0.9966
t345 1 -3.5751 830.5 0.0000 0.9966
t346 1 -3.5751 830.5 0.0000 0.9966
t347 1 -3.5648 1168.4 0.0000 0.9976
t348 1 -3.5648 1168.4 0.0000 0.9976
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95% Odds Ratio
Parameter Odds Ratio Confidence Limits
exposed mtx 0.676 0.515, 0.888

Note that the odds ratio from the pooled logistic regression model is similar to the hazard ratio from
the Cox model. The intercept in a Cox model is the baseline hazard function, which does not appear on
the standard output from a Cox model. The baseline hazard function in the Cox model is the same as
the intercept and time variables in the logistic regression model. We can easily demonstrate this in R:

#run Cox model in R
fit1<-coxph(Surv(t, tstop, dead)~ exposed.mtx, data=s1)

#obtain survival curve for average covariate values
surv1<-survfit(fit1)

#transform survival function to cumulative hazard function
cumhaz1<- -log(surv1$surv)

#transform cumulative hazard function to hazard function
hazard1<-diff(c(0,cumhaz1))

#run pooled logistic regression model
lmfit1<-glm(dead~exposed.mtx + factor(t),

family-binomial(logit), data=s1)

#obtain estimated intercept at mean covariate values
#coefficient 1 is the intercept term
#coefficient 2 is the exposed.mtx term and the mean
# of this 0/1 variable is 0.4358
#coefficients 3 to 350 are the time coefficients
est2<-exp(c(0,lmfit$coef[1] + lmfit$coef[2]*0.4358 +

lmfit1$coef[3:350])

#The values of hazard1 and est2 are identical.

Figure 10 shows the baseline hazard function for this example. Note that the estimated intercepts
from the pooled logistic regression model are identical.

A disadvantage of the pooled logistic regression model is that the estimation of the time coefficients
can lead to computational issues. Time intervals where the data set does not have any events will yield
a baseline hazard value near 0. As you can see in the figure, this happens quite often in our data set,
and the Cox model has no trouble dealing with it. However, in the pooled logistic regression model,
this results in problems with model convergence or extreme coefficient values. We found that warnings
regarding “Quasi-complete separation of data points” and “maximum likelihood estimate may not exist”
could be ignored, since we were not interested in the accuracy of the estimated intercepts for each time
period, and estimates for the coefficients of interest were largely unaffected by these warnings. However,
the %msm macro will stop executing when these errors occur, so if these errors arise during fitting of the
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Figure 10: Baseline hazard function plotted with the logistic estimate.

treatment and/or censoring models, then the problem must be fixed in order to obtain the fit of the final
model.

B %MSM macro documentation

The documentation below was taken from the %msm documentation and has been partially reproduced
for convenience. See msm.sas code comments and msmdoc.pdf for additional details (http://www.hsph.
harvard.edu/causal/files/2012/10/msm.zip).

data= Data set name.
id= Subject unique identifier (variable name).
time= Time of follow-up (variable name) first observation for each

subject must be time=0.(In descriptions below denote time
index with m.)

Structural Model Settings
outcMSM= Time-varying outcome variable 1: event, 0: no event; missing

if cens=1 or cens2=1 or cens3=1.
AMSM= Time-varying exposure variable(s).
AMSM class= Categorical variables in AMSM (other than two levels). De-

fault reference level will be first level.
covMSMbv= Baseline variables to include in weighted models.
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covMSMbh= Baseline hazard variables (e.g., splines for time) to include in
weighted models.

contMSMbh = 1 All variables listed in baseline hazard variables are continu-
ous.

covMSM extra = Extra variables to include in the weighted model for both
competing risk and outcMSM. When calculating the survival
curves the user will need to modify the extra variables def
submacro. This will be used in the creation of the variables
for the weighted models and also in the curves data set.

extra variables used = Extra variables to keep in the data sets that will be used
to create the variables in covMSM extra. Do not need to
include the time variables, or any non-categorical variables
listed in covMSMbv. You WILL NEED to include categori-
cal variables that are listed in the class variables since these
variables are converted to the equivalent binary variables and
the original variables are not kept.

time knots = If non-missing, these are used for creating covMSMbh time
categorical/ spline variables for final model and curves sub-
macro.

classMSMbv = Categorical variables in covMSMbv.
classMSMbh = Categorical variables in covMSMbh.
inter MSM= Interactions with variables listed in AMSM.
inter time= Interactions with variables listed in covMSMbh.

Settings for treatment and possible censoring weight models.
A= Time-varying outcome variable 1: treated, 0: untreated if

missing, weights set to 1.
covAd= Baseline and time-varying variables in treatment model for

denominator of weights.
classAd= List of categorical variables in covAd.
covAn= Baseline variables in treatment model for numerator of

weights.(Anything listed here also needs to be listed in
covMSMbv.)

classAn= List of categorical variables in covAn.
eligible= Eligibility variable for treatment 1: yes, 0: no If 0 then pA d

and pA n will be set to 1.
Cens= Time-varying censoring indicator. 1: yes, 0: no
covCd= Baseline and time-varying variables in model for denominator

of weights
classCd= Categorical variables in covCd
covCn= Baseline variables in model for denominator of weights. (Any-

thing listed here also needs to be listed in covMSMbv.)
classCn= Categorical variables in covCn
eligible cens = Eligibility variable for Cens 1: yes, 0: no If 0 then pC d and

pC n will be set to 1

Settings for second and third censoring models (Same as for cens).
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Cens2=, covC2d=,
classC2d=, covC2n=,
classC2n=, eligi-
ble cens2 =, Cens3=,
covC3d= , classC3d=,
covC3n=, classC3n=,
eligible cens3=,
use stabilized wts = 1 Include the numerator model in the calculation of the weights
user defined weights =
0

Use user defined weights in analysis, skip calculate weights
macro

Data analysis settings.
class ref = first Method for coding reference level for binary dummy variables

for class variables.This level will be represented when all bi-
nary variables are equal to 0.
first = default coding is to use lowest level for all categorical
variables.
last = use largest level as reference level in coding the binary
variables.

use genmod = 0 When equal to 1, use PROC GENMOD for final weighted
model for outcMSM when not running bootstraps or calcu-
lating the analytic variance.Can be used for obtaining an es-
timate of the robust variance. Otherwise use PROC LOGIS-
TIC.

msm var = 1 Calculate analytic estimate of variance
truncate weights = 0 0 default: use all

1 truncates weights below and above 1 and 99 percentile
2 truncates weights below and above 2 and 98 percentile, etc

user defined limits = User defined lower and upper limits for the weights. This
must be a list with two numbers separated with a space:
user defined limits = lower limit upper limit. this will only
be used when trun- cate weights = 1 and user defined limits
is not missing. If only one entry is listed or the list is impty
then the method will used the percentile values given in the
truncate weights option.

Bootstrap settings.
bootstrap= 0 Use bootstrap samples to estimate the variance of the param-

eters of the weighted models.
nboot= 200 Number of bootstrap samples to use.
bootstart = 0 Starting sample in current run of bootstrap samples (0 =

original data).
bootend = 200 Last sample to use in current run of bootstrap samples

(should be <= nboot.)
bootlib = work Libname for saving bootstrap results.
bootname = boot Name of data set for holding bootstrap results
bseed= 12345 Random number seed for boostrap Computational settings
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just models = 0 Estimate the treatment and censoring weights only. Can be
used for testing possible models.

override warnings= 0 Override the warnings from the weight models. Normally,
when the weight models do not converge any further analyses
are not performed. Use this option when running bootstraps
to continue when there are warnings.

logistic options = Possible options to include in the PROC LOGISTIC model
state- ments. (e.g. possible increasing of maxiter).

Output settings
no listing = 0 Suppress all listing output useful when calling macro from a

loop and do not desire the output.
print boot= 0 Print out the individal model results for each bootstrap sam-

ple.
save results= 1 Save bootstrap results into sas data sets.
save weights= 0 Save the weights to a permanent data set. (The macro will

keep the weights in a temporary data set called weights.)
libsurv= work User defined libname for saving results, work directory will

be default
results name= results User defined name of file for saving results.
weights name =
weights

User defined name of file to save calcuated weights in.

debug= 0 1 = keep intermediary data sets, 0 = delete intermediary data
sets

Survival curves and cumulative incidence settings.
survival curves = 0 Calculate the survival probabilities for two situations where

A = 0 and A = 1 for all time points. (This can be general-
ized to other types of treatment histories as described in the
examples.)

AMSM type = 0 Default type of function of treatment will be AMSM = A
1 = A m and 1

m

∑j=m−1
j=0 Aj

2 = Categorical variable, which is a function of time treated.
For curves submacro user must list the times where the func-
tion changes.
3 = User defined function of treatment. For curves macro
this will need to be coded by user.

AMSM knots= When amsm type = 2, this lists the times where amsm
changes levels.
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use natural course = 0 Include a natural course analysis that removes the treatment
weights and AMSM from weighted models (only used when
survival curves = 1).
When use natural course=1 and survival curves = 1 all treat-
ment variables that are to be included in the censoring weight
models need to be included separately to make sure that they
are not included in the weight models that are used in the
natural course weighted models. Any treatement variables
should not be included in covCd and covCn (and any sec-
ondary censoring models.) but included in the following two
macro variables.

treatment usen = Treatment variables to include in the numerator models for
each censoring variable.

treatment used = Treatment variables to include in the deniminator models for
each censoring variable.

competing risk = An additional outcome for which a marginal structural
model is fit. This is done assuming the same structural
model and estimated weights as used for outcMSM.

When using survival curves = 1, a risk difference is
also calculated at each time point. The user can select how
this variable, riskdi, is defined. The possible variables are
km nontreat, km treat, km nc for survival probabilities, for
never treated, always treated and under the natural course.
There are corresponding variables for the cumulative risk:
ci nontreat, ci treat, and ci nc. The variables for nc are
only included when use natural course = 1. When there is a
competing risk, these variables are calculated using methods
suggested in Gooley.

riskdiff1 = ci treat One variable from the list { km nontreat, km treat, km nc,
ci nontreat, ci treat, ci nc }.

riskdiff0 = ci nontreat select from ci nontreat ci nc for calcluating ci treated - riskd-
iff0

print ci = 0
time start = 0 Time point to start calculating the survival probabilities.
time end = 60 Final time point to use in the survival probabilities.
time step = 1 Time step used in calculating survival probabilities. Will

assume that if this is not 1 then the probabilities are constant
between the various time point values.
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